
The Latin Tableau Conjecture

Timothy Y. Chow1 and Mark G. Tiefenbruck2

1Center for Communications Research—Princeton, NJ
2Center for Communications Research—La Jolla, CA

July 30, 2024

Abstract

A Latin tableau of shape λ and type µ is a Young diagram of shape λ
in which each box contains a single positive integer, with no repeated
integers in any row or column, and the ith most common integer appear-
ing µi times. Over twenty years ago, Chow et al., in their study of a
generalization of Rota’s basis conjecture that they called the wide parti-
tion conjecture, conjectured a necessary and sufficient condition for the
existence of a Latin tableau of shape λ and type µ. We report some
computational evidence for this conjecture, and prove that the conjecture
correctly characterizes, for any given λ, at least the first four parts of µ.

1 Introduction

Over twenty years ago, Chow et al. [2] proposed the wide partition conjecture,
which generalized Gian-Carlo Rota’s famous basis conjecture [8]. They hoped
that enlarging the context of the basis conjecture would suggest new lines of
attack (e.g., proofs by induction on the number of boxes in the Young diagram
of a partition). Unfortunately, even the special case of the wide partition con-
jecture that Chow et al. called the wide partition conjecture for free matroids
has shown itself to be difficult, and remains open to this day.

Chow et al. mentioned in passing something they called the Latin Tableau
Question; a positive answer to the question would imply the wide partition
conjecture for free matroids. We believe that the Latin Tableau Question, in
addition to having interesting connections with Rota’s basis conjecture, is inter-
esting in its own right. In the present paper, we give a self-contained presenta-
tion of the Latin Tableau Question (that requires no knowledge of Rota’s basis
conjecture or the wide partition conjecture), and we prove some partial results.

We begin by defining a Latin tableau. A partition λ is a weakly decreasing
finite sequence λ1 ≥ λ2 ≥ · · · ≥ λℓ of positive integers. The individual λi are
called the parts of the partition, and the sum of the parts is denoted |λ|. The
Young diagram or simply diagram of a partition λ is a left-justified grid of boxes
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whose ith row contains λi boxes. If we color each box of the diagram of λ in
such a way that there are no repeated colors in any row or column, then we
call the colored diagram T a Latin tableau of shape λ. The type of T is the
partition µ where µ1 is the number of times that the most frequently occurring
color appears, µ2 is the number of times that the next most frequently occurring
color appears, and so on. See Figure 1 for an example.

Figure 1: Latin tableau of shape (4, 2, 1) and type (2, 2, 2, 1)

The word Latin is inspired by the well-known notion of a Latin square, but
we caution the reader that even if λ is a square shape, a Latin tableau of shape λ
is not required to have type(µ) = λ, and hence is not necessarily a Latin square
in the usual sense. We can now state the following natural question.

Given λ and µ, what are necessary and sufficient conditions
for there to exist a Latin tableau of shape λ and type µ?

A conjectural answer to the above question was proposed in [2, Section 6]. To
state this Latin Tableau Conjecture, we need a few more definitions.

Given a partition λ and a nonnegative integer n, we let αn denote the max-
imum number of boxes of the diagram of λ that we can color using n colors
without repeating a color in any row or column. (Technically, we should write
αn(λ) to emphasize the dependence of αn on λ, but to avoid cluttering the no-
tation, we just write αn when there is no danger of confusion.) We define the
chromatic difference sequence δ = (δ1, δ2, . . .) by letting

δn := αn − αn−1

for each positive integer n. It is clear from the definitions that if there exists a
Latin tableau of shape λ and type µ, then necessarily

δ1 = α1 ≥ µ1

δ2 + δ1 = α2 ≥ µ1 + µ2

δ3 + δ2 + δ1 = α3 ≥ µ1 + µ2 + µ3

...

i.e., δ dominates or majorizes µ (written δ ⪰ µ). The Latin Tableau Conjecture
asserts that this necessary condition is sufficient.

Latin Tableau Conjecture. A Latin tableau of shape λ and type µ
exists if and only if δ ⪰ µ.
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In fact, Proposition 2 below reduces the conjecture to showing that there always
exists a Latin tableau of shape λ and type δ.

More than once, when we have shown the Latin Tableau Conjecture to some-
one, the reaction has been that such a natural statement must be either known
or false. We are confident that it is not known; Chow et al. [2] surveyed a lot
of closely related literature, and in the present paper, we establish further con-
nections with the literature on matching theory (see the proof of Theorem 1)
and chromatic difference sequences. If anything, the prior work in these related
areas makes the Latin Tableau Conjecture seem unexpected, since even slight
generalizations are known to be false (see the discussion of Figure 3 below).

The conjecture could of course be false, but we have checked that it is true
for all partitions λ that fit inside a 12 × 12 square. Moreover, the main result
of this paper is that there always exists a Latin tableau of shape λ and type µ
such that µi = δi for 1 ≤ i ≤ 4. There is some hope that our methods might
generalize to prove the full conjecture, but we currently rely on case analyses
that become increasingly complicated for higher terms of the CDS.

2 Graph-Theoretic Perspective

In this section, we describe two different ways to think of a Young diagram as
a graph. Each way has its own merits.

All our graphs G = {V,E} will be finite, simple, and undirected. A coloring
of G is a map κ : V → N such that κ(u) ̸= κ(v) whenever u and v are adjacent.
(In the literature, the term proper coloring is sometimes used, but we will have
no occasion to refer to any other type of coloring, so we drop the word proper.)
A stable set or independent set of G is a subset S ⊆ V such that whenever u ∈ S
and v ∈ S then there is no edge between u and v. Observe that each color class
of a coloring κ (meaning the inverse image of some n ∈ N) is a stable set. Given
a coloring κ, we define shape(κ) to be the sequence of cardinalities of the color
classes of κ, arranged in weakly decreasing order.

A very important concept for us is the chromatic difference sequence of a
graph [1].

Definition 1. Given a graph G, we let αi(G) (or simply αi, if the graph under
consideration is understood) denote the maximum cardinality of a union of i
(disjoint) stable sets of G. The chromatic difference sequence or CDS of G is
the sequence (δ1, δ2, δ3, . . .) defined by

δi := αi − αi−1, for i ≥ 1.

We say that G is CDS-colorable if there exists a coloring κ of G such that
shape(κ) equals the CDS of G.

The first of our two ways of associating a graph with a partition is given
by the following definition, which establishes a connection between the above
definition of a CDS and the definition given in the Introduction.
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Definition 2. Given a partition λ, the partition graph Gλ is the graph whose
vertices are the boxes of the diagram of λ, and in which two boxes are adjacent
if and only if they lie in the same row or column.

The CDS of an arbitrary graph is not necessarily weakly decreasing (see for
example [3, Remark 2] or [1, Figure 1]). However, we have the following result.

Proposition 1. The CDS of a partition graph is itself a partition; i.e., it is
weakly decreasing.

Proof. This was proved by de Werra [3, Lemma 2.1], who actually showed that
the result holds for the line graph of any bipartite graph.

In particular, the CDS of Gλ coincides with the CDS of λ as defined in the
Introduction, and the Latin Tableau Conjecture implies (and in fact, by Propo-
sition 2 below, is equivalent to) the CDS-colorability of Gλ for all partitions λ.

It is well known that not every graph is CDS-colorable; indeed, despite the
considerable literature on chromatic difference sequences, very few graphs are
known to be CDS-colorable. In Figure 2, we regard the picture on the left as a
graph whose vertices are the boxes and in which two boxes are adjacent if and
only if they lie in the same row or column. The other two pictures in Figure 2
demonstrate that α1 = 5 and α2 = 4 + 4 = 8. So the CDS is (5, 3, 1), but
it is easy to check that there is no coloring κ such that shape(κ) = (5, 3, 1).
A slightly larger graph (Figure 3, reproduced from [2]) shows that that Latin
Tableau Conjecture cannot be generalized even to skew Young diagrams; the
CDS is (6, 6, 3, 1) but there is no coloring κ such that shape(κ) = (6, 6, 3, 1).

Figure 2: A non-CDS-colorable graph

There is a second way to think of a Young diagram as a graph.

Definition 3. Given a partition λ, we let Bλ be the bipartite graph whose
vertices are the rows and columns of the diagram of λ, and in which row i is
adjacent to column j if and only if the diagram of λ contains a box in row i and
column j.

The bipartite graph Bλ is a useful tool for proving the following Proposi-
tion, which, together with Proposition 1, implies that if we can prove the Latin
Tableau Conjecture in the case that µ = δ, then the full conjecture follows.
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Figure 3: A non-CDS-colorable skew shape

Proposition 2. If there exists a Latin tableau with shape λ and type µ, and
µ ⪰ ν, then there exists a Latin tableau with shape λ and type ν.

Proof. We need the following fact about the dominance order on partitions [6,
Chapter I, (1.16)]. If µ ⪰ ν, then we can transform µ to ν by performing a
(carefully chosen) sequence of operations of the following type: take two parts
of the current partition that differ in size—call them a and b, with a < b—and
replace them with a+ 1 and b− 1 (reordering the parts into weakly decreasing
order if necessary) to get a new partition. Given this fact, it suffices to show
that if T is a Latin tableau with shape λ and type µ, and colors i and j occur
with multiplicities µi and µj respectively, where µi < µj , then we can recolor
those boxes in such a way that color i occurs with multiplicity µi+1 and color j
occurs with multiplicity µj − 1.

Now consider the bipartite graph Bλ, and identify the coloring of the boxes
of T with an edge coloring of Bλ. In Bλ, the edges with color i form a matching
(i.e., a set of edges, no two of which touch each other), and similarly the edges
with color j form a matching that is disjoint from the first. The union of these
two matchings form a subgraph of Bλ in which every vertex has degree 1 or 2,
and hence each connected component must be a cycle or a path with edges of
alternating colors. Since µi < µj , at least one of these connected components
must be a path with an odd number of edges and with color j edges in the
majority. Now we can simply reverse the colors of the edges in this path, and
observe that this decreases the number of color j edges by 1, increases the
number of color i edges by 1, and preserves the Latin tableau property.

3 The CDS of a Partition Graph

It will be convenient to coordinatize a Young diagram; box (i, j) denotes the
box in row i and column j, where we number the rows and columns starting
with 0 (i.e., the top left box is (0, 0)).

Definition 4. For k ≥ 0, antidiagonal k is the set of boxes {(0, k), (1, k − 1),
(2, k − 2), . . . , (k, 0)} whose coordinates sum to k.
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The portion of a Young diagram lying (weakly) below and to the right of a
box (i, j) plays an important role, so we introduce the following notation for it.

Definition 5. For a partition λ and nonnegative integers i and j, we define

λ|i, j := {(i′, j′) ∈ λ | i′ ≥ i and j′ ≥ j},

where “(i′, j′) ∈ λ” means that (i′, j′) are the coordinates of a box in the diagram
of λ. The notation λ|i, j is pronounced, “λ corner i, j.”

The following Lemma states a simple but important fact about λ|i, j.

Lemma 1. A stable set in a partition graph Gλ contains at most i + j boxes
outside λ|i, j.

Proof. The portion of the diagram of λ outside λ|i, j is contained in the union
of i rows and j columns. But at most i elements of the stable set can lie in i
rows and at most j elements of the stable set can lie in j columns.

Lemma 1 implies a useful characterization of δ1, the first term of the CDS.

Proposition 3. Let k be a positive integer. Then the CDS of a partition
graph Gλ begins with k if and only if

1. the diagram of λ contains the entirety of antidiagonal k − 1, and

2. the diagram of λ omits some box from antidiagonal k.

Proof. Suppose that conditions 1 and 2 hold. Condition 1 implies that there
exists a stable set with k boxes—simply take antidiagonal k−1. Let (i, j) be the
coordinates of a missing box in antidiagonal k (whose existence is guaranteed
by condition 2). Then Lemma 1 tells us that any stable set contains at most
k boxes outside λ|i, j, and since all of λ lies outside λ|i, j, this means that the
maximum size of a stable set is k. That is, the CDS begins with k.

Conversely, suppose that the CDS begins with k. If there were some box in
antidiagonal k − 1 missing from the diagram of λ, then a similar argument to
the one in the previous paragraph would imply that a stable set could have size
at most k−1, which is a contradiction. So Condition 1 holds. Condition 2 must
also hold, because if the diagram of λ contained the entirety of antidiagonal k,
then there would be a stable set of size at least k+1, again a contradiction.

We use the term main antidiagonal to refer to antidiagonal δ1 − 1. Propo-
sition 3 tells us a lot about δ2 as well. If δ1 = k, then in the worst case, we
can color antidiagonal k − 1 one color and antidiagonal k − 2 another color.
Therefore, δ2 ≥ k − 1. A slightly more careful argument yields the following
result.

Proposition 4. If δ is the CDS of a partition graph Gλ and δ1 = k, then
δr ≥ k − r + 1 for 1 ≤ r ≤ k.
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Proof. Suppose that αr−1 boxes of the diagram of λ have been colored using
r − 1 colors. It suffices to show that at least k − r + 1 uncolored boxes can be
colored using an rth color. Proposition 3 tells us that the diagram of λ contains
the entirety of antidiagonal k − 1. That is, for 0 ≤ i ≤ k − 1, the diagram of λ
contains at least k − i boxes in row i. In particular, in row k − r, there are at
least r boxes, and therefore at least one uncolored box, since only r − 1 colors
have been used so far. Let us color an uncolored box in row k − r with color r.
By the same kind of reasoning, there are at least two uncolored boxes in row
k− r− 1, and at least one of these can be colored with color r, because at most
one of them is rendered unavailable by the box in row k − r that we colored
with color r. Continuing in this way with rows k− r− 2, k− r− 3, etc., we find
that we can color one box in each of the rows 0, 1, . . . , k − r with color r, for a
total of k − r + 1 boxes. This is what we set out to prove.

Combining Propositions 1 and 4, we see that if we fix δ1 := k, then there are
at most five possibilities for the first three terms of a CDS of a partition graph:

(k, k, k), (k, k, k − 1), (k, k, k − 2), (k, k − 1, k − 1), (k, k − 1, k − 2).

Similarly, there are at most Cr possibilities for the first r terms, where r is the
rth Catalan number. It turns out, however, that not all of these possibilities are
realizable. But before proving that, we need to develop a bit of general theory.

3.1 Corner Constraints

Lemma 1 can be used to derive what we call corner constraints on the CDS of
a partition graph. First, we need a definition.

Definition 6. Let λ and µ be partitions, and let d be a nonnegative integer.
Then λ includes µ at d if there exist nonnegative integers i and j such that

1. i+ j = d, and

2. λ|i, j ≃ µ (i.e., the diagram of µ is isomorphic to λ|i, j).

If λ does not include µ at d, then we say that λ excludes µ at d.

As an example, Definition 6 allows us to rephrase Proposition 3 as follows:
δ1 = k if and only if λ excludes the empty partition at d − 1 and includes the
empty partition at d.

Lemma 2 (corner constraints). If λ includes µ at d, then for all r ≥ 1,

αr(Gλ) ≤ rd+ |µ|. (1)

Proof. By Lemma 1, every stable set contains at most d elements outside λ|i, j,
so the union of r stable sets contains at most rd elements outside λ|i, j. On
the other hand, since λ|i, j ≃ µ, the union of r stable sets contains at most |µ|
elements inside λ|i, j. Combining these two facts yield Inequality (1).
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A remarkable consequence of matching theory is that corner constraints
actually determine the values of αr, in the following sense.

Theorem 1. The value of αr(Gλ) is the minimum value of rd+ |µ| as i and j
range over all nonnegative integers, where d := i+ j and µ := λ|i, j.
Proof. It is a standard fact from matching theory [9, Volume A, Corollary 21.4b]
that if B is a bipartite graph with vertex set V , then the maximum size of the
union of r matchings is the minimum value of

r · |X|+ |E[V \X]|

as X ranges over all subsets of V , and |E[V \X]| is the number of edges, neither
of whose endvertices lie in X. In the context of Bλ, this means that we should
consider all subsets of rows and columns—let i denote the number of rows and
let j denote the number of columns—and minimize over r·(i+j) plus the number
of boxes not in any of the chosen rows or columns. The key observation is that
since λ is a partition, we can safely restrict attention to the case in which the
chosen rows and columns are the first i rows and the first j columns, because
choosing any other i rows or j columns can only increase the value of |E[V \X]|
(while keeping the value of |X| = i + j the same), thereby yielding a weaker
upper bound on the value of αr. But if we choose the first i rows and the first
j columns, then the inequality we obtain is just a corner constraint.

3.2 Combinatorial Characterization of the CDS

From Theorem 1, we can infer an algorithm for computing the CDS of a partition
graph Gλ. At first glance, it seems that we must consider infinitely many non-
negative integers i and j, but it turns out that we need only consider finitely
many pairs (i, j). To see this, first find (i0, j0) not in the diagram of λ such that
i0 + j0 is as small as possible; by Proposition 3, δ1 = i0 + j0, so the associated
corner constraints are αr ≤ rδ1. No other corner constraints with µ = ∅ need
to be considered, because they all involve larger values of d and are therefore
weaker. So to compute the CDS of Gλ, the only other pairs (i, j) we need to
consider are those that are inside the diagram of λ.

The above algorithm is nice, but we can say more.

Definition 7. If δ is the CDS of λ, then the normalized CDS δ̄ = (δ̄1, δ̄2, . . .)
is defined by δ̄i := δ1 − δi for all i.

Knowing the CDS is equivalent to knowing the normalized CDS plus the
value of δ1. This may seem like a trivial change of variables, but the advantage
of the normalized CDS is that for a fixed r, there are only finitely many possible
values that the sequence (δ̄1, δ̄2, . . . , δ̄r) can take, and as we now show, we can
give a combinatorial characterization of each such sequence.

We begin by rephrasing the corner constraints in terms of the normalized
CDS. Since αr = δ1+· · ·+δr, we can subtract both sides of the corner constraint
αr ≤ rd+ |µ| from rδ1 to obtain the equivalent inequality

δ̄1 + δ̄2 + · · ·+ δ̄r ≥ r(δ1 − d)− |µ|. (2)
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We can now rephrase the algorithm in the first paragraph of this subsection in
terms of the normalized CDS. First we compute δ1, and we also note that δ̄1 = 0
always. We can then compute δ̄r by induction; if we have already computed
δ̄1, . . . , δ̄r−1, then Theorem 1 tells us that δ̄r is the smallest nonnegative integer
consistent with all constraints of the form of Inequality (2). Notice that for
this calculation, we just need to know the ordered pairs (λ|i, j, δ1 − i − j) as
(i, j) ranges over the diagram. This observation is important enough that we
introduce the following definition.

Definition 8. The inclusion set of a partition λ is the set of all pairs (µ, δ1−d)
such that λ includes µ at d and µ ̸= ∅.

If we forget λ itself but remember the inclusion set of λ and the value of δ1,
then we can recover the normalized CDS. In fact, to compute the normalized
CDS, we do not even need the entire inclusion set. Any (µ, δ1−d) with δ1−d ≤ 0
can be safely omitted from the inclusion set, because then Inequality (2) is
already implied by the nonnegativity of the δ̄i.

Now let us fix r and think about how to compute the first r terms of the
normalized CDS. We can omit any (µ, δ1−d) with |µ| ≥ r(δ1−d), because again
Inequality (2) is then implied by the nonnegativity of the δ̄i. We also have the
following result.

Lemma 3. If we delete every (µ, δ1 − d) with δ1 − d ≥ r from the inclusion set
of λ, then the remaining elements still suffice to recover δ̄1, . . . , δ̄r.

Proof. We may assume that r ≥ 2 since δ̄1 = 0 always. If (µ, δ1 − d) is in
the inclusion set, then there exists (i, j) such that i + j = d and λ|i, j ≃ µ.
Proposition 3 tells us that the diagram of λ contains all of antidiagonal δ1 − 1.
By assumption, i+ j = d ≤ δ1 − r, so λ|i, j must contain all the boxes in row i
extending from (i, j) out to antidiagonal δ1 − 1, namely the boxes (i, j), (i, j +
1), . . . , (i, j + r − 1). Therefore, the first part of µ is at least r.

Let ν be the partition obtained from µ by deleting the first part of µ, so that
ν ≃ λ|i+ 1, j. Since r ≥ 2 by assumption, ν ̸= ∅. As we just noted, the first
part of µ is at least r, so

|ν| ≤ |µ| − r. (3)

Equation (3), together with the fact that λ includes ν at d+ 1, implies that

δ̄1 + · · ·+ δ̄r ≥ r(δ1 − d− 1)− |ν| ≥ r(δ1 − d)− |µ|,

which is the constraint associated with (µ, δ1 − d). So omitting (µ, δ1 − d)
from the inclusion set does no harm, since the inclusion of ν at d+ 1 implies a
constraint that is at least as strong.

In summary, to compute δ̄1, . . . , δ̄r, the only (µ, δ1 − d) in the inclusion set
that we need are those satisfying 0 < δ1 − d < r, and we need only consider µ
such that

|µ| < r(δ1 − d) < r2.
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These bounds have an important consequence: If we let Sr be the set of all pairs
(µ, s) where 0 < s < r and |µ| < r2, then Sr is finite, and the first r terms of
the normalized CDS of any λ, no matter how large, can be computed from a
restriction of the inclusion set of λ to a subset of Sr. In particular, suppose we
want to characterize all the partition graphs whose normalized CDS begins with
a specific sequence of r numbers. Even though this is an infinite set of partition
graphs, there are only finitely many possibilities for how the inclusion set of λ
can restrict to a subset of Sr, and this restriction determines the first r terms
of the normalized CDS. Therefore, we can prove results such as Propositions
5 and 6 below just by carrying out a finite computation (exhausting over all
possible subsets of Sr). Since δ̄1 = 0 always, we usually suppress mention of δ̄1.

Proposition 5. If λ is a partition, then

(a) δ̄2 = 1 if and only if λ includes (1) at δ1 − 1, and

(b) δ̄2 = 0 if and only if λ excludes (1) at δ1 − 1.

Proposition 6. If λ is a partition, then

(a) (δ̄2, δ̄3) = (1, 2) if and only if λ includes (1) at δ1 − 1 and (2, 1) at δ1 − 2;

(b) (δ̄2, δ̄3) = (1, 1) if and only if λ includes (1) at δ1 − 1 and excludes (2, 1)
at δ1 − 2;

(c) (δ̄2, δ̄3) = (0, 2) if and only if λ excludes (1) at δ1 − 1 and includes (2, 2)
at δ1 − 2;

(d) (δ̄2, δ̄3) = (0, 1) if and only if λ excludes (1) at δ1 − 1 and (2, 2) at δ1 − 2
and includes (2) or (1, 1) at δ1 − 1;

(e) (δ̄2, δ̄3) = (0, 0) if and only if λ excludes (1) and (2) and (1, 1) at δ1 − 1
and (2, 2) at δ1 − 2.

We have computed similar characterizations of (δ̄2, . . . , δ̄r) up to r = 7,
but the corresponding Propositions become increasingly long and complicated,
so we have chosen not to state them explicitly. But there is one remark we
should make. As we noted earlier, there are at most Catalan-many possible
values for the first r terms of the normalized CDS of a partition. The first
surprise is that for r = 4, there are only 13, and not 14, possibilities; it turns
out that for no partition graph do we have (δ̄2, δ̄3, δ̄4) = (0, 2, 3). That is not
all; for example, (δ̄2, δ̄3, δ̄4, δ̄5, δ̄6) cannot assume any of the following values:
(0, 0, 0, 2, 5), (0, 0, 0, 3, 5), (0, 0, 0, 4, 5), (0, 0, 1, 3, 5), (0, 0, 1, 4, 5), (0, 0, 2, 3, 5),
(0, 0, 2, 4, 4), (0, 0, 2, 4, 5), (0, 0, 3, 3, 4), (0, 0, 3, 3, 5), (0, 0, 3, 4, 4), (0, 0, 3, 4, 5),
(0, 1, 1, 4, 5), (0, 1, 2, 4, 5), (0, 1, 3, 3, 5), (0, 1, 3, 4, 4), (0, 1, 3, 4, 5), (0, 2, 2, 4, 5),
(1, 1, 3, 4, 5), as well as of course anything starting with (0, 2, 3). The number
of possible values for the first r terms of the normalized CDS of a partition is
an integer sequence that begins

1, 2, 5, 13, 37, 108, 334, . . .
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The closest match to this sequence in the Online Encyclopedia of Integer Se-
quences (oeis.org) as of this writing is A036249, the number of rooted trees
of nonempty sets with n points, which begins

1, 2, 5, 13, 37, 108, 332, . . .

4 Partial CDS-Colorability

We mentioned in the Introduction that we have been able to prove the existence
of a coloring that matches the first four terms of the CDS. We give the proof in
this section.

Definition 9. Let Ln denote the statement that for every partition graph G,
there exists a coloring κ such that the first n parts of shape(κ) coincide with the
first n terms of the CDS of G.

The scrupulous reader may worry about what Definition 9 means if the
length of shape(κ) or of the CDS is less than n. For the purposes of Definition 9,
in such cases we simply “pad out” the sequences with trailing zeros. So in
particular, if Ln is true for all n, then the Latin Tableau Conjecture is true.

The statement L1 becomes obvious as soon as one unwinds the definitions.
The statements L2 and L3 are not too difficult either, as we now show.

Theorem 2. L2 and L3 are true.

Proof. We know from Propositions 1 and 4 that the only possibilities for δ2
are δ2 = δ1 and δ2 = δ1 − 1. Suppose first that δ2 = δ1. That means that
α2 = 2δ1, which means that there exists a disjoint union of two stable sets
whose cardinality is 2δ1. But by definition of δ1, each stable set has cardinality
at most δ1. So each of the two stable sets has cardinality δ1, and we have
exhibited a coloring with the desired properties. Similarly, if δ2 = δ1 − 1, then
there must exist a union of two disjoint stable sets whose cardinality is 2δ1 − 1.
But the only way this can be realized is if one stable set has size δ1 and the
other has size δ1 − 1. The proof of L2 is complete.

There are five possibilities for the first three terms of the CDS. A similar
argument to the one in the previous paragraph handles the cases δ1 = δ2 = δ3
and δ1 = δ2, δ3 = δ1 − 1. If δ3 = δ2 = δ1 − 1, then there exists a union of three
disjoint stable sets whose cardinality is 3δ1−2, but because α2 = δ1+δ2 = 2δ1−1,
at most one of these stable sets can have cardinality δ1. So the only possibility
is that we have one stable set of size δ1 and two stable sets of size δ1 − 1, which
is what we need.

In the remaining two cases, δ3 = δ1 − 2. Since L2 is true, we know that
there exist two stable sets with cardinalities δ1 and δ2 respectively. We can now
establish the existence of a third stable set, disjoint from the first two and having
cardinality δ1 − 2, via the same kind of argument that we used in the proof of
Proposition 4. Namely, the diagram of λ contains the entirety of antidiagonal
δ1 − 1, and so there are at least 3 boxes in row δ1 − 3, one of which we can use
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for our third stable set. We can work our way up the diagram of λ one row at
a time, adding one box to our stable set in each row. This completes the proof
of L3.

The proof of L4 is of course more involved. We can handle all but five cases
using ideas similar to those in the proof of Theorem 2. For convenience, we
state this partial result as a separate Proposition.

Proposition 7. L4 is true except possibly when (δ̄2, δ̄3, δ̄4) equals (0, 0, 2) or
(0, 1, 2) or (0, 2, 2) or (1, 1, 2) or (1, 2, 2).

Proof. Let us first dispense with the case δ̄4 = 3. Theorem 2 tells us that
L3 is true, so there exist three disjoint stable sets with cardinalities δ1, δ2, δ3
respectively. The diagram of λ contains the entire main antidiagonal, so there
are at least 4 boxes in row δ1 − 4, one of which we can use for our fourth stable
set. We can work our way up the diagram of λ one row at a time, adding one
box to our fourth stable set in each row. This gives us a stable set of size δ1−3,
so indeed δ̄4 = 3.

If (δ̄2, δ̄3, δ̄4) is (0, 0, 0) (respectively, (0, 0, 1)), then the only way to cover
4δ1 (respectively, 4δ1 − 1) boxes with four stable sets, each of size at most δ1,
is for the stable sets to have sizes δ1, δ1, δ1, δ1 (respectively, δ1, δ1, δ1, δ1 − 1),
which is precisely what we want.

Suppose (δ̄2, δ̄3, δ̄4) = (1, 1, 1). Then at most one color can occur δ1 times,
so the only way to cover 4δ1 − 3 boxes with four stable sets is with stable sets
of sizes δ1, δ1 − 1, δ1 − 1, δ1 − 1. Finally, if (δ̄2, δ̄3, δ̄4) = (0, 1, 1), then at most
two colors can occur δ1 times, so the only way to cover 4δ1 − 2 boxes with four
stable sets is with stable sets of sizes δ1, δ1, δ1 − 1, δ1 − 1.

For the five outstanding cases, we can deduce some necessary consequences.

Proposition 8. Let λ be a partition.

(a) If (δ̄2, δ̄3, δ̄4) = (0, 0, 2) then λ excludes (1), (1, 1), and (2) at δ1 − 1 and
excludes (3, 3, 3) at δ1 − 3.

(b) If (δ̄2, δ̄3, δ̄4) = (0, 1, 2) then λ excludes (1) at δ1 − 1, excludes (2, 2) at
δ1 − 2, and excludes (3, 3, 2) at δ1 − 3.

(c) If (δ̄2, δ̄3, δ̄4) = (0, 2, 2) then λ excludes (1) at δ1 − 1.

(d) If (δ̄2, δ̄3, δ̄4) = (1, 1, 2) then λ excludes (2, 1) at δ1 − 2, and excludes
(3, 3, 1) and (3, 2, 2) at δ1 − 3.

(e) If (δ̄2, δ̄3, δ̄4) = (1, 2, 2) then λ excludes (3, 2, 1) at δ1 − 3.

Proof. The proof is a routine verification. For example, if (δ̄2, δ̄3, δ̄4) = (0, 0, 2)
then λ must exclude (3, 3, 3) at δ1 − 3, because otherwise Equation (2) with
r = 4 would imply

2 = δ̄2 + δ̄3 + δ̄4 ≥ 4
(
δ1 − (δ1 − 3)

)
− 9 = 3,
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which is false. All the other assertions are easily confirmed using the same kind
of argument; we omit the details.

The way they are currently stated, the exclusion conditions in Proposition 8
are not so easy to grasp, but fortunately, in several cases, there is an easier way
to think about them. For the remainder of this section, we shall use the notation
(i1, j1), (i2, j2), . . . , (is, js) (where i1 < i2 < · · · < is) to denote the coordinates
of all the boxes along antidiagonal δ1 that are not in the diagram of λ (at least
one such box must exist, by Proposition 3).

As an illustration of why this notation is useful, suppose that λ excludes (1)
at δ1 − 1. Then jp+1 ≤ jp − 2; i.e., there cannot be two consecutive missing
boxes in antidiagonal δ1. See Figure 4, where for clarity, we have put dots in
the boxes on the main antidiagonal; the two consecutive missing boxes (1, 3)
and (2, 2) in antidiagonal 4 force λ|1, 2 ≃ (1), as indicated by the red box, so λ
includes (1) at 3. It is intuitively easier to grasp “no two consecutive missing
boxes in antidiagonal δ1” than “λ excludes (1) at δ1 − 1.”

•
•

•
•

Figure 4: Two consecutive missing boxes in antidiagonal 4

This type of reasoning will play an important role in our proof of Theorem 3.

Theorem 3. L4 is true.

Proof. Proposition 7 leaves five remaining cases, which we prove in approxi-
mately increasing order of complexity. In each case, we let λ be a partition
whose normalized CDS begins with the specified numbers, and we construct
disjoint stable sets S1, S2, S3, S4 of cardinalities δ1, δ2, δ3, δ4 respectively. We
sometimes refer to the inclusion of a box in Si as coloring the box with color i.
In our figures below, the presence of i in a box means that the box is in Si.

Case (δ̄2, δ̄3, δ̄4) = (1, 2, 2). We claim that there cannot be four consecutive
missing boxes in antidiagonal δ1; for if there were, then by drawing a diagram
analogous to Figure 4, we would deduce that λ includes (3, 2, 1) at δ1−3, but this
is ruled out by Proposition 8(e). For i = 1, 2, 3, we let Si comprise all the boxes
on antidiagonal δ1−i. We let S4 comprise any and all boxes on antidiagonal δ1 in
the diagram of λ, as well as all boxes with coordinates (ip, jp+3) for 1 ≤ p ≤ s−3
(by Proposition 6, λ includes (2, 1) at δ1 − 2, so s ≥ 3). See Figure 5 for an
example.

There are two things to check: first, that S4 has size δ1 − 2, and second,
that S4 really is a stable set that is disjoint from the other three. There are
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3 2 1 4
4 3 2 1

4 3 2 1
4 3 2 1

3 2 1 4
3 2 1
2 1 4
1

Figure 5: Example for Case (δ̄2, δ̄3, δ̄4) = (1, 2, 2)

δ1 + 1 boxes on antidiagonal δ1, of which s are not in the diagram of λ, and
δ1+1− s are in S4. So the cardinality of S4 is (δ1+1− s)+ (s− 3) = δ1− 2, as
claimed. The row and column coordinates of the boxes of S4 are all distinct by
construction, so S4 is a stable set. The crucial point is that jp+3 ≤ jp−4 because
there cannot be four consecutive missing boxes in antidiagonal δ1. Therefore,

ip + jp+3 ≤ ip + jp − 4 = δ1 − 4,

and thus (ip, jp+3) does not lie on antidiagonals δ1 − 1, δ1 − 2, or δ1 − 3. So S4

is indeed disjoint from the other three stable sets.
Case (δ̄2, δ̄3, δ̄4) = (1, 1, 2). By Proposition 6, λ includes (1) at δ1 − 1, so

s ≥ 2. We claim that jp+2 ≤ jp − 4 for 1 ≤ p ≤ s − 2. For if jp+2 ≥ jp − 3,
then three out of four consecutive boxes on antidiagonal δ1 must be missing, but
by Proposition 8(d), λ excludes (2, 1) at δ1 − 2, so no three consecutive boxes
on antidiagonal δ1 are missing. So somewhere in λ, one of the configurations
in Figure 6 must exist (where we have put dots in the boxes along the main
antidiagonal). That is, λ must include either (3, 3, 1) or (3, 2, 2) at δ1 − 3, but
this contradicts Proposition 8(d).

•
•

•

•
•

•

Figure 6: Missing 3 out of 4 consecutive boxes in antidiagonal δ1

For i = 1, 2, we let Si comprise all the boxes on antidiagonal δ1 − i, and we
let S4 comprise all the boxes on antidiagonal δ1 − 3. We let S3 comprise any
and all boxes on antidiagonal δ1, as well as all boxes with coordinates (ip, jp+2)
for 1 ≤ p ≤ s− 2. The rest of the argument is similar to the previous case; we
readily verify that the cardinality of S3 is δ1 − 1, and because jp+2 ≤ jp − 4, it
follows that the boxes with coordinates (ip, jp+2) lie in antidiagonal δ1 − 4 or
lower, and hence are disjoint from S1, S2, and S4. See Figure 7 for an example.
This completes the proof of Case (δ̄2, δ̄3, δ̄4) = (1, 1, 2).

The remaining three cases rely on the decomposition of λ into what we call
building blocks. We regard the missing boxes (i1, j1), . . . , (is, js) as dividing up
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3 4 2 1
4 2 1 3

4 2 1 3
3 4 2 1

4 2 1
4 2 1 3
2 1 3
1 3

Figure 7: Example for Case (δ̄2, δ̄3, δ̄4) = (1, 1, 2)

λ into smaller (nonempty) pieces. More precisely, building block 0 is the set
of boxes (i, j) in λ with i < i1 and j1 ≤ j (as long as this set is not empty),
building block 1 comprises the boxes (i, j) in λ with i1 ≤ i < i2 and j2 ≤ j < j1,
and so on. See Figure 8 for an example, where the building blocks are colored
green (and dots are placed along the main antidiagonal for reference). Along
antidiagonal δ1, a building block contains all the boxes except that it omits the
box in column 0, or the box in row 0, or both; we call these three kinds of
building blocks top, bottom, and interior blocks respectively. In Figure 8, there
are three interior blocks, and a bottom block, but no top block.

•
•

•
•

•
•

•
•

Figure 8: Building Blocks

The construction of S1, . . . , S4 proceeds in two phases. In Phase 1, we show
how to color individual building blocks. Actually, for each kind of building block
(top, bottom, interior), we show only how to color the minimal building blocks
of a given height; minimality means that any other building block (for partitions
with the specified normalized CDS values) of the same kind and height contains
a minimal one. It suffices to show how to color minimal building blocks; if
a building block is not minimal, we can simply ignore the extra boxes when
forming S1, . . . , S4. In Phase 2, we color λ by coloring each building block the
way it was colored in Phase 1, and then coloring additional boxes as needed.

There is one important subtlety. Let Λ(a, b, c) denote the set of partitions
such that (δ̄2, δ̄3, δ̄4) = (a, b, c). A building block for Λ(a, b, c) is often, but
not always, itself a member of Λ(a, b, c). For example, (1, 1, 1) is a top block
for Λ(0, 0, 2) but (1, 1, 1) /∈ Λ(0, 0, 2). To check that our colorings are valid,
we must verify that the building blocks that are themselves in Λ(a, b, c) are
correctly colored in Phase 1, and we must also verify that Phase 2 produces
correct colorings whether or not the constituent building blocks are themselves
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in Λ(a, b, c).
Case (δ̄2, δ̄3, δ̄4) = (0, 0, 2). Proposition 8(a) says that λ excludes (1) at

δ1−1 (which as we noted above means that there are no two consecutive missing
boxes in antidiagonal δ1), and that λ excludes (1, 1) and (2) at δ1−1. Therefore,
jp+1 ≤ jp − 3; i.e., the missing boxes in antidiagonal δ1 must be at least three
apart, and an interior building block must have a box at the start and end of
antidiagonal δ1 + 1. Figures 9 and 10 illustrate the minimal interior building
blocks of heights 4–12, along with a Phase 1 coloring (there is no interior building
block of height 3 because Proposition 8(a) says that λ excludes (3, 3, 3) at δ1−3).
It should be clear from Figure 10 how the pattern extends to minimal interior
building blocks with larger height.

2 3 4 1
3 4 1 2

1 2 3
1 2 3

2 4 3 1
4 3 1 2

4 1 2 3
3 1 2
1 2 3

2 4 3 1
4 3 1 2

4 1 2 3
4 3 1 2
3 1 2
1 2 3

Figure 9: Minimal Interior Building Blocks of Heights 4, 5, 6

2 4 3 1
4 3 1 2

4 1 2 3
4 3 1 2
2 4 1 3
3 1 2
1 2 3

2 4 3 1
4 3 1 2

4 1 2 3
4 3 1 2

4 2 1 3
4 3 1 2
2 4 1 3
3 1 2
1 2 3

2 4 3 1
4 3 1 2

4 1 2 3
4 3 1 2

4 2 1 3
4 3 1 2

4 2 1 3
4 3 1 2
2 4 1 3
3 1 2
1 2 3

2 4 3 1
4 3 1 2

4 1 2 3
4 3 1 2

2 4 1 3
4 3 1 2
3 1 2
1 2 3

2 4 3 1
4 3 1 2

4 1 2 3
4 3 1 2

4 2 1 3
4 3 1 2

2 4 1 3
4 3 1 2
3 1 2
1 2 3

2 4 3 1
4 3 1 2

4 1 2 3
4 3 1 2

4 2 1 3
4 3 1 2

4 2 1 3
4 3 1 2

2 4 1 3
4 3 1 2
3 1 2
1 2 3

Figure 10: Minimal Interior Building Blocks of Heights 7–12

The minimal top (respectively, bottom) building blocks, together with their
colorings, may be obtained by deleting the top three rows (respectively, left
three columns) from the minimal interior building blocks. All these building
blocks, except (3) and (1, 1, 1) and (4, 4, 4, 3), are in Λ(0, 0, 2), and it is readily
verified that the given colorings are valid.
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In Phase 2, after coloring each building block as in Phase 1, S1 will always
already have the correct cardinality. Moreover, in each building block, S2 and S3

are the same size as S1, so they also already have the correct cardinality. Thus
we just need to show that S4 can be suitably enlarged. To see this, first note
that if (3) and (1, 1, 1) and (4, 4, 4, 3) are not involved, then between any two
consecutive building blocks, we can put two more 4’s in antidiagonal δ1−3, and
this will make S4 the right size without putting any 4’s in a row or column with
an existing 4. See Figure 11 for an example.

2 4 3 1
4 3 1 2

4 1 2 3
4 3 1 2

4 1 2 3
3 1

4 1 2
1 2 3
2
3

Figure 11: Case (δ̄2, δ̄3, δ̄4) = (0, 0, 2): Phase 2

Finally, if any of the building blocks (3) or (1, 1, 1) or (4, 4, 4, 3) are involved,
we put a 4 in antidiagonal δ1 − 2 between building blocks, and if (4, 4, 4, 3)
is involved, we also put a 4 in the one as-yet-uncolored box of (4, 4, 4, 3) if
necessary. It is easy to check that this construction works. See Figure 12.

4 1 2 3
2 3 4 1
3 4 1 2
4 1 2 3

4 1 2 3
3 1
1 2
2 3

2 3 4 1
3 4 1 2
4 1 2 3

4 1 2 3
2 3 4 1
3 4 1 2

1 2 3
1 2 3

Figure 12: Case (δ̄2, δ̄3, δ̄4) = (0, 0, 2): Phase 2

Case (δ̄2, δ̄3, δ̄4) = (0, 1, 2). Proposition 8(b) says that λ excludes (1) at
δ1 − 1 and excludes (2, 2) at δ1 − 2; by arguments similar to those we have
seen before, this implies that jp+1 ≤ jp − 3. Moreover, Proposition 8(b) says
that λ excludes (3, 3, 2) at δ1 − 3, so if jp+1 = jp − 3 then λ|ip, jp+1 ≃ (3, 3, 3).
Therefore:

1. There is no restriction on the heights of minimal top and bottom building
blocks, and they contain no boxes in antidiagonals δ1 + 1 or higher.

2. The shape (3, 3, 3) is a minimal interior building block of height 3.

3. The remaining minimal interior building blocks have height at least 4, and
they contain no boxes in antidiagonals δ1 + 1 or higher.
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For Phase 1, in both Cases 1 and 3, we put all boxes (if any) in the diagram
of λ on antidiagonal δ1 − 1 (respectively, δ1, δ1 − 2, δ1 − 3) in S1 (respectively,
S2, S3, S4). In Case 3, we also put the top left box (0, 0) in S2. See Figure 13,
which also shows how we color (3, 3, 3).

1
2

3 1
1 2
2

4 3 1
3 1 2
1 2
2

2 4 3 1
4 3 1 2
3 1 2
1 2

2 4 3 1
4 3 1 2

4 3 1 2
3 1 2
1 2

2 3 1
3 1 2
1 2 4

Figure 13: Case (δ̄2, δ̄3, δ̄4) = (0, 1, 2): Building Blocks

For Phase 2, if (3, 3, 3) is not one of the building blocks, we simply fill
antidiagonal δ1 − 2 with 3’s and antidiagonal δ1 − 3 with 4’s. If (3, 3, 3) is
involved, then see Figure 14. Again, the verification that this construction is
correct is straightforward and we omit the details.

2 3 1
4 3 1 2
3 1 2 4
1
2

4 2 3 1
4 3 1 2
3 1 2 4

3 1
1 2
2

4 2 3 1
4 3 1 2
3 1 2 4

4 3 1
3 1 2
1 2
2

4 2 3 1
4 3 1 2
3 1 2 4

2 4 3 1
4 3 1 2
3 1 2
1 2

4 2 3 1
4 3 1 2

3 1 2 4
2 3 1
3 1 2
1 2 4

Figure 14: Case (δ̄2, δ̄3, δ̄4) = (0, 1, 2): Phase 2

Case (δ̄2, δ̄3, δ̄4) = (0, 2, 2). Proposition 8(c) says that λ excludes (1) at
δ1 − 1. Therefore, the partition (1) is not a valid building block; the minimal
building blocks of height at most 5 are those shown in Figure 15. The larger
minimal building blocks are interior building blocks that contain all the boxes
in antidiagonal δ1 except the box in row 0 and the box in column 0, and no
other boxes. (We need not separately consider top and bottom building blocks
of height at least 4 because they contain a valid interior building block as a
proper subset.) To color one of these larger building blocks, we let S1 and S4

comprise all of antidiagonals δ−1−1 and δ1−3 respectively; we let S3 comprise
all of antidiagonal δ1−2 except for the box in column 0, and we let S2 comprise
all of antidiagonal δ1 plus the box with coordinates (0, 0).

1
2

1 2
2 1
1 2

2 3 1
4 1 2
1 2

2 4 3 1
4 3 1 2

1 2
1 2

2 4 3 1
4 3 1 2

4 3 1 2
1 2

1 2

Figure 15: Case (δ̄2, δ̄3, δ̄4) = (0, 2, 2): Building Blocks

In Phase 2, if the building blocks are sufficiently large, then when we con-
catenate them, we simply add two more 3’s along antidiagonal δ1 − 2 and two
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more 4’s along antidiagonal δ1 − 3. The smaller building blocks are handled as
shown in Figure 16.

4 3 1 2
2 1
1 2

4 3 1 2
2 3 1
4 1 2
1 2

3 4 2 1
4 3 1 2

2 3 1
4 1 2
1 2

4 2 3 1
3 4 1 2

4 3 1 2
2 3 1
4 1 2
1 2

4 2 3 1
3 4 1 2

4 3 1 2
2 4 3 1
4 3 1 2

1 2
1 2

Figure 16: Case (δ̄2, δ̄3, δ̄4) = (0, 2, 2): Phase 2

5 Concluding Remarks

We believe that there is some hope that the coloring algorithms in the proof
of Theorem 3 can be generalized to prove the full conjecture, though at the
moment, there remain several annoying ad hoc steps.

Another possible approach to proving the conjecture, which we have not
investigated, is to examine closely what happens if one takes Bλ and applies
the known general algorithms for constructing maximum-cardinality unions of
i matchings in a bipartite graph, for i = 1, 2, 3 . . . . For an arbitrary bipartite
graph, these unions of i matchings will not “nest” nicely, but maybe one can
see how to make them nest in the case of Bλ.

It is also natural to ask more generally which classes of graphs are CDS-
colorable. We suspect that CDS-colorability is NP-complete, but perhaps there
are interesting classes of CDS-colorable graphs. Griggs [5] showed that incom-
parability graphs of symmetric chain orders are CDS-colorable. It is an un-
published result of the first author (proved independently by others [4, 7]) that
indifference graphs (also known as unit interval graphs) are CDS-colorable, and
that the coloring can be constructed by scanning the vertices from left to right,
assigning the lowest available color at each step. It may also be possible to
extract some examples from the literature on integer multiflows [9, Volume C];
there is no general “max-flow min-cut” theorem in this setting, but some partial
results are known, which may be relevant.

Finally, for those with an interest in Rota’s basis conjecture, here is an
ambitious generalization to matroids of the Latin Tableau Conjecture. Let λ be
a partition, let δ denote the CDS of Gλ, and let µ = δ′ be the conjugate partition
(i.e., the diagram of µ is obtained from the diagram of δ by transposing rows
and columns). Let M be any matroid that is a disjoint union of independent
sets of cardinalities µ1, µ2, . . . . Then we may conjecture that there is a way to
place the elements of M into the diagram of λ, one element per box, such that
the rows and the columns are all independent sets of M . We have not made
any serious attempt to disprove this conjecture, so maybe it is false, but even if
it is false, perhaps the counterexamples will help illuminate the Latin Tableau
Conjecture and/or Rota’s basis conjecture.
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