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Abstract

Say thatu is a “subpartition” of an integer partitionif the multiset of parts ofx is a submultiset
of the parts ofa, and define an integer partitionto be “wide” if for every subpartitionu of A,
wu > ' in dominance order (where’ denotes the conjugate pf). Then Brian Taylor and the first
author have conjectured that an integer partitiois wide if and only if there exists a tableau of
shapei such that (1) for all, the entries in théth row of the tableau are precisely the integers from
1tox; inclusive, and (2) for allj, the entries in thgth column of the tableau are pairwise distinct.
This conjecture was originally motivated by Rota’s basis conjecture and, if true, yields a new class of
integer multiflow problems that satisfy max-flow min-cut and integrality. Wide partitions also yield
a class of graphs that satisfy “delta-conjugacy” (in the sense of Greene and Kleitman), and the above
conjecture implies that these graphs furthermore have a completely saturated stable set partition. We
present several partial results, but the conjecture remains very much open.
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1. Introduction

The main purpose of this paper is to publicize, and to present partial results on, a new
combinatorial conjecture of Brian Taylor and the first author. We begin by stating the
conjecture. (We assume some knowledge of the terminology of integer partitions; readers
lacking this background should consult [16].)

Definition 1. An integer partitionu is a subpartitionof an integer partitiorh. (written

u C 1) if the multiset of parts ofu is a submultiset of the multiset of parts af
Equivalently, the Young diagram ¢f is obtained by deleting some rows from the Young
diagram ofi.

Definition 2. An integer partition. is wideif © > u’ in dominance order for aj C A.
Hereu' denotes the conjugate pf

Conjecture 1 (The wide partition conjecture for free matroids). An integer partiios
wide if and only if there exists a tableau of shapsuch that

(1) foralli, the entries in theth row of the tableau are precisely the integers from 4;to
inclusive, and
(2) forall j, the entries in thgth column of the tableau are pairwise distinct.

We believe that the wide partition conjecture (or WPC for short) for free matroids has
intuitive appeal as stated. However, the reader might prefer one of the following equivalent
formulations.

¢ In the language of edge colorings, it states that for bipartite graphs arising from wide
partitions, the set of all color-feasible sequences has a unique maximal element.

e In the language of network flows, it states that certain integer multiflow problems
that are associated with wide partitions satisfy a max-flow min-cut theorem and have
integral optimal solutions.

¢ In the language of the Greene—Kleitman theorem, it states that the line graph
of a bipartite graph arising from a wide partition has a stable set cover that is
simultaneously-saturated for alk.

More precise statements of these reformulations will be given later.

As we explain later, the motivation for the WPC for free matroids comes from Rota’s
basis conjecture, which in turn is motivated by certain questions in classical invariant
theory. A curious consequence of this connection to invariant theory is that the WPC for
free matroids might actually be more interesting if itfédse rather than true, because
then it would probably lead to new and unsuspected identities in invariant theory. We do
not describe the invariant-theoretic connection in detail in this paper, but hope to do so
elsewhere.

Our main partial result is that the WPC for free matroids is true for certain wide
partitions with only a small number of distinct part sizes. We also show that certain graphs
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arising from wide partitions satisfy a property called-tonjugacy,” which Greene and
Kleitman famously showed was true of comparability graphs. This result seems interesting
in its own right, because graphs satisfyingconjugacy are rather hard to come by [5], and
our examples seem to be new. Finally, we show that to prove the WPC for free matroids, it
suffices to consider self-conjugate shapes.

2. Basic definitions

We follow [16] for most of our notation and terminology for (integer) partitions, but
the reader should note two important exceptions. Firstly, the subpartition rejation
defined above is different from the usual one. Secondly, fortablaauis simply a Young
diagram with a positive integer entry in each cell; there is no implicit condition of semi-
standardness.

Young diagrams may be identified with bipartite graphs in a natural way.i#f a
partition, we defings, to be the bipartite graph whose vertices are the rows and columns
of A and that has an edge between rioand columnj if and only if (i, j) is a cell of the
Young diagram oh (i.e., if and only if j < A;).

Sometimes it is more convenient to considgiG,,), the line graphof G, than to
considerG,, itself. The vertices ofL(G,) are the cells of the Young diagram bf and
two vertices are adjacent if the cells lie in the same row or column.

The Young diagram of. may also be identified with a 0—1 matrix witlix) rows and
A1 columns; thei, j) entry is one if and only ifi, ;) is a cell of the Young diagram.

We will employ all the above ways of looking at Young diagrams, so the reader should
get used to switching freely between the different viewpoints.

There are two well-known theorems that we need later. See [1,7,14] for proofs.

Proposition 1 (Gale—Ryser theoreml)et A be a partition ofn with ¢ parts and letu be a
partition of n with m parts. Then there exists anx m 0—1matrix A whoseith row sums
to A; (for all /) and whosejth column sums t; (for all j) if and only ifA” > .

Proposition 2 (Birkhoff-von Neumann theoremf nonnegative integer square matrix
whose rows and columns all sumvtanay be written as the summepermutation matrices.

3. Wide partitions

As we said in the introduction, a partitionis wide if © > w’ for all © C A. In this
section we prove some fundamental facts about wide partitions.
The number of wide partitions af is an integer sequence that begins
1,1,2 3,35 6,9, 11 14, 18 23 29, 35, 45, 56, 68, 85, 103 125
150 183 217, 266, 315 380, 449, 534, 628 745, 874, 1034 1212 1423
1665 1944 2265 2627, 3055 3536 4099 4735 5479 6309 7273 8358
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9599 11012 12605 14421 1648Q 18825 21456 24474 27822 31677,
35934 40825 46217 5242Q 59253 67056 75699 85532 96407

Superseeker does not recognize this sequence.

Ostensibly, checking wideness requires checking all subpartitions, a potentially ex-
ponential-time computation. We show next that checking wideness takes only polynomial
time.

Definition 3. A subpartitionu € A is alower subpartitionif w is obtained from by
deleting the largestparts ofA for somei > 0.

The following fact was first conjectured by Xun Dong (personal communication).

Proposmon 3. If A is a partition such thaf > u’ for all lower subpartitionsu of A, then
A is wide.

Proof. If A is a partition, letr! denote the subpartition of obtained by deleting thih
part ofA. Thus)J =x;if j <iandAl i=Ajif j =i

The proof is by mductlon on the number of partsiofLet A be a partition such that
w > ' for all lower subpartitionge of A. Then in particularj > 2" anda! > (A1)’. We
claim thatx! > (1) for all i. To see this, fix any. We need to show that for ajl,

j j
D oa= (W),

k=1 k=1

Note that it suffices to consider only thoge< A1, so we henceforth assume thaf A;.
If j <ithenbecausg > 1A', we have

j j j j
Dor=> =) =) (M),
k=1 k=1 k=1

k=1

so let us suppose that> i. We split into two cases, the first case being the case in which
j < Ai. Then

j+1 j+1

J
DoM=D HGa=A) =) ke
k=2 k=2

k=1

(A, —1) (because. > (1') andj < 1)

M\.

~
1
N

M\.

()J) (becausg < A;).

X
I,
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In the second casg,> A;, SO

i gl
Dom=D A Ga—n)
k=1 k=2

j+1
> Zkk +(j—2Xi) (becausg < A1)

k=2

J Ai ., J N
S M-+ G ==Y W)+ Y (), - D)+ G =)
k=1

k=1 k=xi+1
J
=> ()
k=1

This proves the claim. Now note that by inductia,is wide. It follows that\! is wide for
all i, because we have just shown that> (1)), and everyproper lower subpartition.
of A’ is a subpartition of.! and therefore satisfigs > 1/, so we can again apply induction
to conclude that! is wide.

Finally, supposeu is a subpartition ofr. If uw = A then u > u’ becauser > A'.
Otherwise C A! for somei, and therefore satisfigs > 1/ becausé.’ is wide. O

The following easy but useful lemma has been independently observed by several
people, including D. Waugh.

Lemma 1. If A is wide themy)—; > i forall i > 0.
Proof. Sincex is wide, so is the subpartitionm consisting of the last+ 1 rows ofx. The
largest part ofu is A¢)—;i. The first column ofu is i + 1. Sincep >/, it follows that

Ay—i =i+1>i. O

Definition 4. If A andu are partitions then + p denotes the partition whoséh part is
Ai + Wi

Proposition 4. If A is wide andu is a single column whose height is at magt- 1, then
A+ is wide.

Proof. We claim that it suffices to show the following statement.

If 1 is wide andu is a single column whose height is at ma$t+ 1, theni + pu >
A+

For if we can prove this, then we can apply it to any subpartition of our original
partition to deduce the proposition.
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Fix i. We want to show that the sum of the fitstows of A + u is at least the sum of
the firsti columns ofs + . We split into two cases.

Case 1 (i < 7). In passing fromh to A + ., the sum of the first rows increases bi. As
for the columns, note that in passing frénto A + w, all we are doing is adding a column
of heightyj. Therefore this causes the sum of the firsblumns to increase by at most
wy — A;. Butby Lemma 1)) > 1] —i + 1. Therefore the increase in the sum of the first
columns is at most

=A< +1) - (—it+1) =i,
which completes the proof of this case.

Case 2 (i > p7). In passing fromk to A + u, the sum of the first rows increases by .
But the sum of the first columns cannot increase by more thapeither, so this case is
also settled. O

Corollary 1. If A andu are wide then so i& + .

Proof. Sincexr + 1 = u+ A we may assume that > ). Add the columns of to 1 one
by one, applying Proposition 4 each timex

Definition 5. A wide partition A is decomposablé there exist wide partitiong andv
such that. = p + v; it is indecomposabletherwise.

Caution. Although every wide partition is a sum of indecomposables, the decomposition
need not be unique.

Proposition 5. For any fixedt, the number of indecomposable wide partitions witrarts
is finite.

Our proof of Proposition 5 uses the following lemma.

Lemma 2. Let A be a wide partition of= and leta be a positive integer. Then for all
sufficiently largeb, the partition

a times

—
M: (bvbs "'1b7)"11)"27"'7)"f(l))
is wide.

Proof. We may obtain a weaker claim than Lemma 2 by replacings' wide” by the

weaker conclusiont > u’.” Proving this weaker claim suffices to prove the lemma,
because by Proposition 3 one need only check lower subpartitiops ahd all such
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lower subpartitions are either covered by the weaker claim or are subpartitions of the wide
partition .
We now prove the weaker claim. Writefor £(w). Pick anyb > n/a + ¢; we shall see
that this is sufficiently large. We want to show that foriad{ ¢, the sum of the first rows
of u is at least the sum of the firsicolumns ofu. We split into two cases.

Casel (i < a). The sum of the first rows of u is ib. The sum of the first columns ofu
is at mosti£. Butb > ¢ by construction.

Case 2 (a < i < ¢). The sum of the firsi rows of i is at leastab. By choice ofb,
ab >n+ al. Butn + af is at least the sum of the firéstcolumns ofu (sincern is large
enough to encompass all bf anda? is large enough to encompass the sum of the first
columns of the first: rows of i), which in turn is at least the sum of the figstolumns
of u,sincet >i. 0O

Proof of Proposition 5. Call a partitionu squarishif e,y > £(1). Any squarish partition
with ¢ parts may be obtained by starting with &x ¢ square shape and adding columns
of height at most to it. Therefore, by Proposition 4, all squarish partitions are wide.

Let A be an indecomposable wide partition witparts. We show by induction arthat
Ae—i — Ae—iy1 IS bounded for all < £ — 1. This implies the proposition.

If i =0, theni, < 2¢ — 1; otherwise we would have= u + v with u an¢ x £ square
andv a squarish partition.

For largeri, we know by induction that the lower subpartitierconsisting of the last
parts ofA can only be one of a finite set of possible partitions. For any fixexbserve that
if Ae—i — A¢—i41 IS sufficiently large, then we may write= u + v wherev is a squarish
partition with¢ — i parts andu is of the form given in Lemma 2 (with the\” of Lemma 2
beingk and ‘a” being¢ —i). So since\ is an indecomposable wide partition,; —A¢—; 1
is bounded. There are only finitely many choicesifpso the proof is complete.

4. Latin tableaux and the wide partition conjecture

Definition 6. If M is a matroid, then aiM-tableauis a Young diagram with an element
of M in each cell of the diagram.

Definition 7. Let A be a partition. We say that satisfies Rota’s conjectuii& for any
matroid M and any sequenad,;) of independent sets dff satisfying|/;| = A; for all i,
there exists am/-tableaul” of shapex such that

(a) foralli, the set of elements in théh row of T' is I;, and
(b) for all j, the elements in thg¢th column of 7" comprise an independent setMf.

(In particular, the elements in thjgh column are pairwise distinct.)
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Conjecture 2 (The wide partition conjecture). A partition satisfies Rota’s conjecture if
and only if it is wide.

We shall see shortly that wideness is necessary; it is sufficiency that is the real question.
The WPC contains Rota’s basis conjecture [11] as a special case. It was formulated by
Brian Taylor and the first author, originally with the hope that it would allow Rota’s basis
conjecture to be proved by induction on the number of cells in a wide partition.

Unfortunately, the WPC does not seem to be any easier than Rota’s basis conjecture.
Nevertheless, we believe that the WPC is interesting in its own right, because in the
invariant-theoretic context that originally motivated Rota’s basis conjecture, there is
nothing special about square shapes. If you believe Rota’s basis conjecture, then you should
probably believe the WPC too.

Since the WPC seems hard, we have focused on the special case of free matroids.

Definition 8. Let » and . be partitions. ALatin tableauT of shaper and contenj is a
Young diagram of shapewith a single positive integer in each cell such that

(a) no two cells in the same row or column have the same entry, and
(b) the total number of occurrences of the integequalsu; .

A partition A is Latin if there exists a Latin tableall of shape. and content.’.

It is not hard to see that in a Latin table@wf shape. and content’, the entries in row
are precisely the integers from 11g. It follows that if A = A/, then in a Latin tableali of
shapel and contend’ = A, the entries ircolumni are also precisely the integers from 1
toA;.

The WPC for free matroids. A partition A is Latin if and only if it is wide.

We have verified the WPC for free matroids by computer for all partitions whose Young
diagram has at most 65 cells. This set of partitions includes all indecomposable wide
partitions with at most five parts. We have also verified the WPC for free matroids for
all partitions whose Young diagram fits inside ax4Q0 square.

Readers familiar with the Alon—Tarsi conjecture on Latin squares may wonder if the
WPC for matroids representable over a field of characteristic zero follows from an Alon—
Tarsi-like conjecture that the number of “even” Latin tableaux is not equal to the number
of “odd” Latin tableaux of the same shape. We expect this to be true and provable in the
same way that it is proved for square shapes, but we have not verified the details.

As Victor Reiner was the first to observe, it is easy to see thatisfLatin, then it is
wide. For letT be a Latin tableau of shapeand content’. If u C A, thenT restricted tqu
is a Latin tableau—call iS—of shapex and conteni/’. We want to show that > u'.

Fix i and erase all the entries Sfexcept those that are less than or equal There are at
mosti entries remaining in each column 8f so if we “push them up” as far as possible,
we can fit them all into the firstrows of §. Therefore the first rows of © contain at least
as many cells as the sum of the firgiarts ofu’.
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As an aside, we remark that Latin tableaux, especially of self-conjugate shapes, seem
to be quite pleasing structures. Many concepts associated with Latin squares, such as
orthogonality, can be generalized to Latin tableaux. We speculate that Latin tableaux may
have applications to error-correcting codes and/or the design of experiments.

5. Relationship with list coloring
There is an alternative form of the WPC for free matroids, which we now describe.

Definition 9. A partition A is strongly Latinif, for any sequencél;) of sets of distinct
integers satisfyingl;| = A; for all i, there exists a tabledll of shapex such that

(a) for alli, the set of integers in thigh row of T is I;, and
(b) for all j, the integers in thgth column of7T are pairwise distinct.

The WPC for free matroids, alternativeform. A partition 2 is strongly Latin if and only
if it is wide.

If we recall the statement of the (full) WPC, then this alternative form of the WPC for
free matroids might seem more natural than the form we stated in the previous section. It
matters little, however, since we shall see that the two forms are equivalent.

Itis clear that a strongly Latin partition is Latin. One might think that the converse would
be easy to prove since intuitively the “worst case” is the one in which the/settersect
as much as possible. However, this is the same intuition that leads to the false conclusion
that the list chromatic number of a graph must always equal its ordinary chromatic number.
Therefore we must tread carefully.

Definition 10. An orientationof a graphG is an assignment of a direction to each of the
edges ofG.

Proposition 6 (Galvin). Let G be the line graph of a bipartite graph, and suppose that
each vertex of5 is equipped with a list of available colors. If there exists an orientation
of G in which every complete subgraph@fis acyclic and in which the outdegree of every
vertex is less than the number @distinc)) colors in its list, then there is a list coloring

of G (i.e., a choice, for each vertex, of a color from its list in such a way that distinct colors
are chosen for adjacent vertices

Proof. See [8]. O
Theorem 1. If A is Latin then it is strongly Latin.
Proof. Assume thats is Latin, so that there exists a Latin table@uof shapex and

content)’. Use T to define an orientation of (G;), as follows: Let an edge between
two cells in the sameow point to the cell whose entry i is larger, and let an edge
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between two cells in the sanm®lumnpoint to the cell whose entry iff is smaller. It is
easily verified that in this orientation, the outdegree of a vertex inttheow is at most
A —1.

To see thah is strongly Latin, suppose we are given a sequeiigeof sets of distinct
integers satisfying/;| = ;. The existence of the tableau in the definition of “strongly
Latin” is equivalent to the existence of a list coloring btG,) if each vertex in row
of L(G,) is equipped with the list;. So the orientation of.(G,) constructed above,
combined with Proposition 6, implies the theorenm

Theorem 1 becomes easier to prove if we restrict ourselves to square shapes. Two direct
proofs of this special case were given in [2], and it also follows immediately from the
Lebensold—Fulkerson theorem [6,12] on disjoint matchings in bipartite graphs.

We remark that Galvin’s theorem allows us to prove something slightly stronger than
Theorem 1. Say that an orientation b{G,) is colorableif every complete subgraph is
acyclic and the outdegree of a vertex in fferow is at mosh,; — 1. Galvin tells us that to
prove thath is strongly Latin, we need only construct a colorable orientation. This can be
done using something slightly weaker than the Latin property.

Definition 11. A tableauT of shape is weakly Latinif

(a) foralli, the set of integers in thigh row of T is {1, 2, ..., A;}, and
(b) for all j andk, there are at mogt entries in thejth column ofT that are less than or
equal tok.

A partition A is weakly Latinif there exists a weakly Latin tableau of shape
Proposition 7. A partition is weakly Latin if and only if it is Latin.

Proof. Essentially the same construction as above shows thatsfweakly Latin then
there exists a colorable orientation©fG,). O

We conclude this section with an application of the above results.
Proposition 8. If A andu are Latin then so is. + .

Proof. Assume thad andu are Latin. Then by Theorem 1, is strongly Latin. LetT),

be a Latin tableau of shapeand content.’. Let 7, be a Latin tableau whosih row
contains the integers + 1, A; + 2, ..., A; + u; in some order. Such &, exists because
w is strongly Latin. If we now take the union of the set of columngpfwith the set of
columns of7,, sort the columns according to height, and combine them to form a tableau
of shapex + i, then we see thef is in fact a Latin tableau of shape+ . and content
A+w'. O

Corallary 2. If all indecomposable wide partitions with at mdsparts are Latin then all
wide partitions with¢ parts are Latin.
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Proof. This follows from Proposition 8. O

Our computer calculation therefore shows that all wide partitions with at most five parts
are Latin. Unfortunately, the set of indecomposable wide partitions does not seem to be
any more tractable than the set of all wide partitions, so at this point it is not clear how
useful Corollary 2 is.

6. Relationship with the Greene—Kleitman theorem

Much of what follows can be stated in the general framework of antiblocking
hypergraphs, but for simplicity we restrict our attention to the case of perfect graphs.
Readers unfamiliar with the terminology of perfect graphs can find complete definitions
in [15], which we shall be citing several times.

Let G be a perfect graph. A-cliqueis a union ofk complete subgraphs @, and
ak-stable sets a union of stable sets of;. We letwy (G) denote the maximum cardinality
(number of vertices) of &-clique of G and we letw, (G) denote the maximum cardinality
of ak-stable set of;G. We also define

Awp(G)=w —wp—1 and Ao (G) = ap — ag_1.

If there is no confusion, then we may drop th&™from the notation for simplicity.

If Aw and Aa are partitions (i.e.Aw1 > Awz > Awz > --- and Aag > Aap >
Aasz > ---) and furthermore are conjugates of each other, then we sagthatisfiesA-
conjugacy It is a famous theorem, due to Greene and Kleitman [9,10], that comparability
graphs of finite posets satisfy-conjugacy.

A clique coverof G is a vertex-disjoint union of complete subgraphs whose union
covers all vertices of;. If A is a clique cover, then we abuse notation and alsb tetnote
the integer partition consisting of the sizes of the cliques (arranged in nonincreasing order
of course). IfA, = Awy for all k, then we say thait is auniformclique cover. (In general,
uniform clique covers need not exist.) We defsiable set coveranduniform stable set
coversin a completely analogous way.

Let k be a positive integer. A clique coveris k-saturatedf

k

If A is simultaneouslyt-saturated for alk, then we say that is completely saturated
Similarly a stable set coveris k-saturated if
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and is completely saturated if it issaturated for alk. For arbitrary graphss-saturated
cligue/stable set covers need not exist, and even for comparability graphs, completely
saturated clique/stable set covers need not exist.

Proposition 9. If G is a perfect graph satisfying\-conjugacy, then for every positive
integer k, there exists a clique cover that is simultaneouslgaturated and(k + 1)-
saturated, and there also exists a stable set cover that is simultangdegalyrated and
(k + 1)-saturated.

Proof. Theorem 4.13 of [15]. O

The conclusion of Proposition 9 is sometimes referred to as-gfeenomenon

The concept of uniform clique/stable set covers does not seem to be as standard as the
other concepts above. We have not found a reference for the following simple proposition,
although it is unlikely to be new.

Proposition 10. Let G be a perfect graph. Every completely saturated clique cover is
uniform. If for all k there exists &-saturated clique cover, then every uniform clique cover
is completely saturated. Both statements hold with “stable set” in place of “clique”

Proof. The complement of a perfect graph is perfect [13], so it suffices to consider clique
covers.

Let 2 be a completely saturated clique cover. EixThere exists a-stable sefS with
cardinalitnyil A;. Now, S contains at most miAx, A;) vertices from théth clique of.
But the cardinality ofS forcesS to containexactlymin(i, A;) vertices from theéth clique
of A. Therefore, each of thee largest cliques ok (which all have cardinality at leas)
contains one element from each stable sef.dt follows that each stable set 6fhas at
leastk vertices.

Now augments to a stable setover St by adjoining singleton sets. These singletons
are precisely the vertices in tlidlargest cliques of. that arenotin S. Therefore, for any
k-cligue C—in particular, one of maximum cardinality—we have

k

k k
ICI< Y mink, [sl) =Y " min(k, [s]) + Y (i =) =kh+ Y (i =) =D A
i=1 i=1

sest ses i=1

Sincek was arbitraryy. is uniform.
Conversely, leth be a uniform clique cover. Fix and letu be ak-saturated clique
cover. Because is uniform,A > u, i.e.,A’ < i/, so in particular

k k

SN up
i=1

i=1
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Becauseu is k-saturated, there existstastable sefS such that

k
Z;,Lg =1S].
i=1

Finally, because is a clique cover,

NES I

k
i=1

Combining these facts forces the inequalities to be equalities, and thexé$dreaturated.
Sincek was arbitrary). is completely saturated.O

Line graphs of bipartite graphs enjoy certain properties that arbitrary perfect graphs do
not, as the following proposition illustrates.

Proposition 11. If G is the line graph of a bipartite graph, thehw is a partition, and for
every positive integet, there exists &-saturated clique cover af. Moreover, ifAw is a
partition, thenG satisfiesA-conjugacy.

Proof. Theorems 4.18 and 4.23 of [15]. (ThAk is a partition was already proved in
Lemma2.10of [3].) O

Not much beyond the conclusions of Proposition 11 can be said, even if we require
G to equal L(G,) for a (not necessarily wide) partition. For example, if we take
Ar=(7,7,6,6,3,3,3) andG = L(G,), then there is no uniform clique cover, and in fact
Aw is not even a partition. Moreover, there is no 5-saturated stable set cover. However, one
interesting question does remain open.

Latin Tableau Question. Let G = L(G,) for an arbitrary partitionr. Does there
necessarily exist a uniform stable set cover?

Note that line graphs of arbitrary bipartite graphs need not have uniform stable set
covers. If the answer to the Latin Tableau Question is yes, then this would not only verify
the WPC for free matroids, but would also give a necessary and sufficient condition for the
existence of a Latin tableau of shapand contenj, for arbitraryi and .

If A is required to be wide, then one easily deduces much stronger conclusions.

Lemma 3. If 1 is wide then the set of rows of the Young diagram &f a uniform clique
cover of L(G,).

Proof. It suffices to show that the maximum cardinality of drglique is the sum of the
firstk parts ofx, forall k < £(1). LetC be ak-clique. Since we are trying to maximix€|,
we may assume that the cliques ©@fare maximal. TherC is the union ofi rows and
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J columns for some nonnegative integérand j satisfyingi + j = k. Again, since we
are trying to maximiz¢C|, we may assume thaf is the union of théfirst i rows and
thefirst j columns. But becauseis wide, the lower subpartition of A comprising the
last¢(A) — i parts ofA satisfiesu > u’, and therefore the number of vertices in the first
j columns bunotin the firsti rows of the Young diagram df is at most the total number
of vertices in rows + 1 throughi 4 j of the Young diagram of. Thereford C| is at most
the sum of the first + j = k parts ofa. O

Theorem 2. If A is wide then the set of rows of the Young diagram @ a completely
saturated clique cover of.(G,). Moreover, L(G,) satisfies A-conjugacy and the
t-phenomenon.

Proof. By Propositions 10 and 11, any uniform clique cover of the line graph of a bipartite
graph is completely saturated. So in the case at hand, Lemma 3 implies that the set of
rows is completely saturated. The existence of a uniform clique cover implieAthat a
partition, so the remaining claims follow from Propositions 9 and 1.

The obvious remaining question is whether there exists a uniform (or equivalently, by
Proposition 10 and Theorem 2, a completely saturated) stable set cokéGof if A is
wide. It is easy to see that the existence of such a cover is equivalent to the WPC for free
matroids.

7. Relationship with network flows and with edge colorings of bipartite graphs

In the introduction we mentioned the existence of a relationship between the WPC and
integer multicommodity flows (a.k.a. “integer multiflows”). To see this, direct the edges
of G, so that rows point to columns, and give each edge a capacity of one. EGlaitge
a directed grapl#f, by adjoiningi1 source verticesy, ..., s, andi; destination vertices
di,...,d,,, and adding a directed edge of capacity one from eadb each row ofa
and from each column of to eachd;. What we seek is a simultaneous routingaf
commodities onH,; specifically, we want to sentl units of commaodityi from s; to d;,
where the amount of every commodity on every link is required to be an integer.

In this language, the WPC for free matroids essentially states that the multiflow
problems coming from wide partitions enjoy a max-flow min-cut property, and have
integral optimal solutions. Multiflow problems in general do not satisfy max-flow min-cut;
this is another way of seeing why the WPC for free matroids cannot be proved purely by
“general nonsense,” and that something is special about wide patrtitions (if the conjecture
is true).

The game of finding technical conditions to ensure max-flow min-cut has been played
before in the literature. Unfortunately, we have been unable to find anything that applies
directly to our situation; the grapH, does not satisfy any kind of Eulerian condition or
topological condition that is known to be helpful. It is also readily seen that the coefficient
matrix of the linear programming relaxation of this multiflow viewpoint is not totally
unimodular.
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Nevertheless, we are able to obtain some partial results, which we present now.
Lemma 4. A partition 2 is wide if and only if forL (G,),
Aa =)

Proof. The “only if” part follows from the results of the previous section, but we ignore
this and give a self-contained proof. We show that being wide is equivalent to the condition

k

Yk o =Z;’,.

We construct a directed network by takieg with edges directed from the row vertices
to the column vertices and with capacity 1, adding a soui@@nnected to each row vertex
by an edge of capacity and a target connected from each column vertex by an edge of
capacityk. The maximum flow in this network has value exaetly becausé-stable sets
in the line graph correspond to edge subsets pbf maximum degree (since line graphs
of bipartite graphs are perfect).

Consider a cutlC = (S, ') in this network § € S,t € §’). First chooser, the row
vertices inS. The optimal way to add column vertices $ds to includey € S if it has at
leastk neighbors inR (because then it is cheaper to have the edge) in the cut rather
than the edges from’s neighbors inR to it). Thus the weight of the minimum catg for
agivenr is

w(Cg) =k(n —|R])+ Y _min{k,
j

N(j)NR|}

wheren is the number of rows and/(j) is the set of neighbors of column vertgx
IN(j)N R] is the size of thegth column of the subpartition defined &
If the partition is wide, we haij min{k, IN(j) N R|} > Z’;zl IN(j) N R| and thus

k k
w(Cr) 2 k(n— R+ IN(HNR|[ =D 2
j=1 j=1

which means that the minimum cut is at Ie@f;zlx’j. On the other hand, this value is
achieved by setting to contain the vertices corresponding to rows of length at a8y
the max-flow min-cut theorem, the maximum flow is equaE(}zl A’j.

Conversely, ifo; = ’;:1 A’j, consider &-stable setF; of sizeay. Since anyk-stable

set has at most mfR, A;} squares in each rowando; = ), minfk, 1;} = ’;zlk’., we
have thatF; has exactly mifk, A;} squares in each row Consider now any subset of
rows R, and letG; be the restriction of} to rows R. Then the size o5, is the size of

the firstk columns intersected witR. On the other handj, has at most squares in each
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column; therefore its size is at most that of the firsows of R. Over allk and all subsets
R, this implies that is wide. O

Lemma5. Let G be the line graph of a bipartite graph, and lebe the number of distinct
part sizes ofAx(G). Letas > a2 > - -- > a; be these part sizes arigd the number of parts
of size> a;. Then a uniform stable set cover exists if and only if there exists a chain

FiCcFhCc---CF
whereF; is ak;-stable set of sizey, .

Proof. Itis easy to see that {fA1, Ao, ..., Ag,) is a uniform stable set cover, then

is ak;-stable set of sizey, and these sets form a chain.

Conversely, suppose that we have such a chainFo C Fy C --- C F,. Now consider
eachF; as a set of edges in the underlying bipartite graph. Defirte be the maximum
degreeinG; = F; \ F;—1. We would like to havey; < k; — k;—1 for eachi. Therefore, take
a chain where the vectags, g2, . . -, g») is lexicographically minimal and assume thyat
is the first index wherg; > k; — k;j_1. Note thatvi < j: g; = k; — k;_1, otherwiseF;_;
would have degrees strictly smaller thian 1. Then it could be extended to a larggr ;-
stable setin the line graph. B&Y_; is by assumption the maximukn_1-stable set. Also,
G1 = F; has degrees at makt, thereforegs = k1 andj > 1.

Let x be a vertex with degreg; in G;. Sinceg; > k; — k;_1 and F; has degrees at
mostk;, x has degree strictly smaller th&n_; in F;_1. Assumex is on the “left-hand
side.” Consider all paths from, using edges fron&; andG ;_; alternately. Letd denote
the union of all these paths. We claim that for any vestex the right-hand side, reachable
fromx in H,

o yhasdegreek;_1 —k;_»in G;_1;
e y hasdegreeCk; —k;j_1in G;.

By contradiction, if either of these conditions were violatgdyould have degree strictly
smaller thank; 1 in F;_1. (This follows from the assumptions af;,_, and F;.) Then
we could switch the edges on the (odd lengthy path betweerG;_; and G, thereby
increasing the size of’;_1, while it would remain ak;_;-stable set in the line graph.
However,F;_; had sizexkjfl which was maximum.

This implies that we can estimate the number of edges;im H andG;_1 N H. The
degrees irG;_1 on the right are actually equal 93 — k;_», becausg is the first index
where a higher degree exists. Thus if thereravertices on the right-hand side, reachable
in H, we have

Gj-1NH|=r(kj-1—kj-2), IGjNH|<r(kj—kj-1).
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However, there is a vertex on the left-hand sid¢ Which has degree strictly greater
thank; — k;_1 in G; N H. By assumption, every vertex on the left has degree at most
kj_1—kj_2in G;_1, so there must be a vertexon the left, reachable i/, which has
degree strictly smaller thaky — k;_1 in G; N H. By switching the edges betweéiy and
G j-1 on the path fronmx to z, we maintain all the properties df;_1 and F;; however,
we have decreased the number of vertices of degyee G ;. If there are still vertices of
degreg; in G j, we repeat this procedure until we decrease the maximum deggee-tb.
For eachi < j, we have maintaineg; = k; — k;_1. This contradicts the assumption that
the vector(gs, g2, - . ., g») IS lexicographically minimal.

Now we have a chaif = Fo C F1 C --- C F, where the degrees i6G; = F; \ F;_1
are at mostk; — k;_1. By Birkhoff-von Neumann, we can decompose edghinto
ki —ki_1 matchingsAfl), Afz), ...,Afk"_k"‘l). Each of these matchings must have size
a;; otherwise the largest one together with 1 would form a(k;_1 + 1)-stable set larger
thanay, | +ai = o, j+1.

We have constructed a stable set cover

D 2 D (2 () (kp—kp—1)
A7 AT LAY A AT AT
where the sizes of the stable sets are exactly the partaof O
To see the power of the above lemmas, first note that Proposition 7 follows easily.

Alternative proof of Proposition 7. Consider a weakly Latin tableau. Defig to be the

set of all cells containing numbers upitoNow considelFy, as a set of edges in the bipartite
graph. Since the degrees iy are at mosk, it can be decomposed intomatchings and
thereforeF}, is ak-stable set in the line graph. The size Bf is Z’;zl A, which is the
maximum possible size of lastable set. By Lemma 5, there exists a uniform stable set
cover, which corresponds to a Latin tableam

We can also easily deduce the following result.
Theorem 3. If A is a wide partition with at most two distinct part sizes, theis Latin.

Proof. Let a partitionA have parts of two different sizés < k. By Lemma 4 Aa =/
which hask; parts of one size anél, — k1 parts of another (smaller) size. There is a
k1-stable set of size, and akp-stable set of sizey,. The latter is the complete set of
vertices, so they form a chain trivially. By Lemma 5, there exists a uniform stable set
cover, which corresponds to a Latin tableau

It is worth mentioning that Theorem 3 also follows from known results on edge
colorings of bipartite graphs, in particular from the following result of Folkman and
Fulkerson.



T.Y. Chow et al. / Advances in Applied Mathematics 31 (2003) 334-358 351

Definition 12. Let A be anm x n 0—1 matrix with a total ofV 1's. Let 1 be a partition
of N. We say thatd is u-decomposablié A can be written as a sum

A=Pi+ P2+ -+ Py

of 0—1 matricesP; such that for alf, P; has a total of exactly; 1's and has at most one 1
in each row and column.

Proposition 12 (Folkman and Fulkersonlet A be anm x n 0-1 matrix with a total
of N 1's. Let u be a partition of N with at most two distinct part sizes. Thehis
u-decomposable if and only if eveeyx f submatrixB of A has at least the following
number ofl’s:

> ;-

iz(m—e)+(n—f)+1
Proof. Theorem 3.1 of [4]. O

Alternative proof of Theorem 3. Letm = £(1) and lethn = 1. Let A be them x n matrix
whose(i, j) entry is 1 if (i, j) is a cell ofx (i.e., if j < A;) and whosd(, j) entry is 0
otherwise. Lejx = 2’. Thenu also has at most two distinct part sizes. Chasing definitions,
we see tha#d is u-decomposable if and only K is Latin. We therefore need only check
that the wideness of implies that the condition on submatrices4in Proposition 12 is
satisfied. This is straightforward and we leave the details to the reader.

It is tempting to wonder how far Theorem 3 may be generalized. Perhaps the WPC for
free matroids can be generalized to arbitrary bipartite graphs? Unfortunately, the answer is
no; if the condition on the number of distinct part sizesuah Proposition 12 is dropped,
then it no longer remains true, and a counterexample may be found in [4]. However, it is
possible that as far as edge colorings are concerned, it is being a partition that is the crucial
property (rather than being wide). More precisely, the following question remains open.

Latin Tableau Question, alternative form. Does Proposition 12 remain true if the
condition on the number of distinct part sizes.0f dropped bufl is required to arise from
a Young diagram (i.e.A must satisfy the condition that whenews; = 1 thenA,; =1
forall r <i ands < j)?

It is not hard to show that this question is indeed equivalent to the Latin Tableau
Question as previously formulated. Surprisingly, in spite of the sizable literature on edge
colorings of bipartite graphs, the condition thatarise from a Young diagram does not
seem to have been directly addressed before.

The set of all color-feasible partitions (i.e., partitigmgor which there exists an edge
coloring in which colori is used exactlyt; times) for a given bipartite graph does not
in general have a unique maximal element in dominance order. But as we mentioned in
the introduction, the WPC for free matroids is equivalent to the claim thaf fofwith A
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wide), therds a unigue maximal element. Now, a necessary and sufficient condition for the
existence of a unique maximal element is given in [3]. Unfortunately, this necessary and
sufficient condition does not seem easy to verify for wide partitions. However, the main
theorem of [3] does imply the following.

Theorem 4. If X is a wide partition with three distinct part sizes and either the second or
third part size occurs with multiplicity one, orifis a wide partition with four distinct part
sizes and the second and fourth part sizes both occur with multiplicity one). tisdratin.

Proof. This may be deduced from Corollary 3.3 of [3] in the same manner that we deduced
Theorem 3 from Proposition 12.0

We have one final result along the same lines.

Theorem 5. If X is a self-conjugate wide partition with at most three distinct part sizes,
thenx is Latin.

Proof. Let ) be a self-conjugate wide partition with exactly three distinct part sizes. (The
case of one part size is trivial and the case of two part sizes is covered by Theorem 3.) Let
m1 be the multiplicity of the largest part size, lab be the multiplicity of the next largest
part size, and let:z3 be the multiplicity of the smallest part size. Call the integers from 1
to m1 thelow range,call the integers fronm + 1 tom1 + m> themid range,and call the
integers fromm1 + mo + 1 tomy + m2 + m3 thehigh range

The Young diagram of subdivides naturally into six rectangular subregions, which we
give names as shown in the picture below.

A B | D
B | C
D/

In addition, we definé to be the square regiohU BU B’ U C.

In view of Lemma 5, it suffices to construct a subget A containing exactlyns cells
from each row and each column df and a subse$ C E, disjoint froma, containing
exactlymy cells from each row and each columniof We split into two cases.

Case 1 (m1 > m2 + m3). Temporarily place anyi1 x m1 Latin squareL into regionA.
(The only purpose oL is to help describe andg.) Let « be the set of cells of. with
an entry between 1 ands inclusive. Letb be the set of cells of with an entry between
m3+ 1 andmg3 + my inclusive, and leB = b U C. It is easily checked that and 8 have
the desired properties.

Case 2 (m1 < mz + m3). The sete may be constructed exactly as in Case 1, but the
construction of8 requires several steps.
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Let b be a subset oB with the following two properties(1) each row ofb contains
ma 4+ m3 —m1 cells, and2) the number of cells in any two columnsbfliffer by at most
one. It easy to see that the Gale—Ryser theorem implies that such alsess.

Let ¢; be the number of cells in thi#h column ofb. We claim thatc; < m» for all i.
To see this, note thgt; ¢; = m1(m2 + m3 — my). Since any twa; differ by at most one,
it follows that if ¢; > m> for somei thenc; > mo for all j. Since B hasmy columns, it
follows that}"; ¢; > m3. Thereforem3 < m1(mz+ms3—m1). However, we claim that the
wideness of. implies that

m2 4+ m2 > my(my +m3), 1)

yielding the desired contradiction. To see why the inequality (1) is true, suppose first that
m2 < m1. The lower subpartitiorB’ U C U D’ of A is wide, so in particular the sum of

its first my rows is at least the sum of its first; columns. Then inequality (1) follows
immediately. On the other hand, suppesge> m1. The rectangléd’ is wide, som1 > ms3.
Therefore,

m% + m% > m% +mimo = mi(m1+ mz) > mi(m2 + ms),

yielding inequality (1) again.

Sincec; < mp, the quantitymy — ¢; is a honnegative integer for all Since any two
¢; differ by at most one, another easy application of Gale—Ryser implies that there exists
a subset C C whoseith row contains exactly:2 — ¢; cells and whoséth column also
contains exactlyn, — ¢; cells.

Finally, we set

B=(A\a)UbUb Uc,

whereb’ is the subset 0B’ that is the transpose 6f Again one easily checks thatandj
have the required propertiest
8. Reduction to self-conjugate partitions

Theorem 6. Let A = (A1,...,1,) be a wide partition, and lein = A1. Let u be the
following partition with2m + n parts

u:(2m+)»’1,...,2m+A;,1,m,...,m,k1,...,kn).

(In other words,u is a 2m x 2m square withi added on the bottom arid added on the
right.) Thenu is a wide partition.

Proof. We use Lemma 4 and prove that for anythere is a-stable set inL.(G,) of size
b_1 ;. We distinguish three cases:
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Fig. 1.

Casel (k < m). We knowL (G,) has ak-stable set of S|z§ =11 Denote this set by
We define &-stable sef” in L(G,): First, include(2m + i, j) € F’ and(j,2m+i) e F’
for each(i, j) € F. To define the remaining part & (in the 2n x 2m square), we need to
find a bipartite graph onri2 4+ 2m vertices with a given sequence of degrees on both sides:
m degrees equal tb and the remaining degrees smaller thaSee Fig. 1.)

We find the bipartite graph using the Gale—Ryser theorem (Proposition 1), which may
be restated as follows. There is a bipartite graph with degreeso, > --- > o, on the
leftandpy > p2 > - -- > p, On the right, if and only i andp as partitions satisfy

o' >p.

In this case, we have = p andoy = --- =0, =k, i.€.,Vi: o/ > m > k. On the other
hand,vi: p; < k which implies that’ 2

Case2 (m < k < 2m). Inthis case, we include iR’ all squaresi, j) with eitheri > 2m or
Jj > 2m. Also, we include the squarés +i, m+ j) for 1 <i, j < m and squareén+i, j)
and(j, m + i) satisfying(j; —i) modm € {0, 1, ...,k —m — 1}. To completeF’, we must
find a bipartite graph om + m vertices (the top-leftz x m square) with degrees on both
sides equal ta; =m — 1}. (See Fig. 2.)

Again, we apply the Gale—Ryser theorem. We find the complement of the required
bipartite graph, which should have degrees- d; = 1] on both sides. Here = p = A’
andi > A’ because. is a wide partition.

Case 3 (k > 2m). Here, we include all squarés j) with i > m or j > m. To completeF”’,
we must find a bipartite graph on + m vertices with degrees on both sides equal to
d; =min{m,k —m — 1}. (See Fig. 3.)

Similarly to Case 2, we find the complement of the bipartite graph which should have
degreesn — d; = max{1; — (k — 2m), 0} on both sides. Here’ = o’ is equal tor without
the firstk — 2m rows. Since\ is wide, agairv’ > p. O

Corallary 3. If the wide partition conjecture holds for self-conjugate wide partitions, then
it is true for all wide partitions.
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Fig. 3.

Proof. Let M be a matroid) a wide partition and; an independent set given for each
row. We define a self-conjugate wide partitipncontainingi as above. We assign the
same sef; to each row ofs. We assign arbitrary independent sets to the remaining rows.
(If necessary, we extend the matroid to a sufficiently lavfjesuch thatA is independent
in M’ iff AN M isindependenti/.)

Assume that the wide partition conjecture holds for self-conjugate partitions. Then there
exists a permutation of; in each row so that the set in each column is independent.
Obviously, the assignment restricteditgatisfies the same propertyc

9. Counterexamples

One might hope that even for wide partitions with more than two part sizes, one could
build the desired chain of-stable sets greedily, either from the top or from the bottom.
However, this is impossible, since some maximyrstable sets cannot be extended to any
maximumk;_1-stable set and some maximuinstable sets do not contain any maximum
ki_1-stable set.

Figure 4 shows a maximum 4-stable set that is not extendible to any maximum 5-
stable set.
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Fig. 4.

Fig. 5.

Figure 5 shows a maximum 5-stable set that contains no maximum 4-stable set.

As we mentioned before, uniform stable set covers do not always exist for line graphs
of bipartite graphs. Even for graphs of some “skew shapes” (differences of two partitions),
there may be no chain é@fstable sets along the lines of Lemma 5.

For example, the shaded area in Fig. 6 is the unique maximum 2-stable set, while
the shaded area in Fig. 7 is the unique maximum 3-stable set. Thus there is no chain of
maximumk-stable sets.

On a different note, it is tempting to try to prove the WPC for free matroids by explicitly
filling in the Young diagram of. one row at a time or even one entry at a time. Some
such approach may indeed work, but we have tried several such constructions without
success. For example, Sandy Kutin (personal communication) has suggested filling in the

Fig. 6.
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Fig. 7.

rows one at a time starting from the bottom, and whenever there is a choice, choosing
the lexicographically largest possibility. This method fails fo£ (6, 6, 6, 5, 2, 2), as seen
below.

WO

N|W|F |

RIN|W|[
=

NIV
RIN|R OOV

Acknowledgments

The first author thanks Victor Reiner for suggesting that the WPC, network flows,
and the Greene—Kleitman theorem might be related, and thanks Debra Waugh for
useful suggestions. Sergey Fomin, Alexander Postnikov, and Mihai Ciucu provided good
feedback on earlier presentations of this work. This research was partially supported by the
NSF under contracts ITR-0121495 aGER-0098018.

References

[1] G. Birkhoff, Tres observaciones sobre el algebra lineal, Univ. Nac. Tucuman Rev. Ser. A 5 (1946) 147-151.

[2] T. Chow, On the Dinitz conjecture and related conjectures, Discrete Math. 145 (1995) 73-82.

[3] D. de Werra, Investigations on an edge coloring problem, Discrete Math. 1 (1971/72) 167-179.

[4] J. Folkman, D.R. Fulkerson, Edge colorings in bipartite graphs, in: R.C. Bose, T.A. Dowling (Eds.),
Combinatorial Mathematics and Its Applications, Proceedings of the Conference Held at the University
of North Carolina at Chapel Hill, April 10-14, 1967, UNC Press, 1969.

[5] S. Fomin, Generalizations of the Greene—Kleitman theorem, Discrete Math. 157 (1996) 376-377.

[6] D.R. Fulkerson, The maximum number of disjoint permutations contained in a matrix of zeros and ones,
Canad. J. Math. 16 (1964) 729-735.

[7] D. Gale, A theorem on flows in networks, Pacific J. Math. 7 (1957) 1073-1082.

[8] F. Galvin, The list chromatic index of a bipartite multigraph, J. Combin. Theory Ser. B 63 (1995) 153-158.

[9] C. Greene, Some partitions associated with a partially ordered set, J. Combin. Theory Ser. A 20 (1976)
69-79.

[10] C. Greene, D.J. Kleitman, The structure of Spetdnéamilies, J. Combin. Theory Ser. A 20 (1976) 41-68.



358 T.Y. Chow et al. / Advances in Applied Mathematics 31 (2003) 334-358

[11] R. Huang, G.-C. Rota, On the relations of various conjectures on Latin squares and straightening coefficients,
Discrete Math. 128 (1994) 225-236.

[12] K. Lebensold, Disjoint matchings of graphs, J. Combin. Theory Ser. B 22 (1977) 207-210.

[13] L. Lovasz, A characterization of perfect graphs, J. Combin. Theory Ser. B 13 (1972) 95-98.

[14] H.J. Ryser, Combinatorial properties of matrices of zeros and ones, Canad. J. Math. 9 (1957) 371-377.

[15] M. Saks, Some sequences associated with combinatorial structures, Discrete Math. 59 (1986) 135-166.

[16] R. Stanley, Enumerative Combinatorics, Vol. 2, in: Cambridge Stud. Adv. Math., Vol. 62, Cambridge Univ.
Press, 1999.



