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a Natural Proof?
Timothy Y. Chow

Have you ever wondered whether the reason there
is (apparently) no simple proof that P 6= NP is that
P 6= NP? Or to turn it around, that an easy proof
that P 6= NP would somehow solve a problem that
is hard not only in the Millennium Prize sense but
also in the computational-complexity sense?

Stated this naïvely, the above idea does not
quite make sense, but in a paper that won them
the 2007 Gödel Prize, Alexander Razborov and
Steven Rudich [3] proved a result that showed that
there is something to this intuition after all. Infor-
mally, their argument is as follows. Let T be an
NP-hard function; for example, let T take as input
a list of cities and distances and as output an op-
timal traveling-salesman tour through the cities.
Suppose that your strategy for proving that P 6= NP
is to identify some property P that T has, but
that no polynomial-time computable function has.
Suppose further that P has the following natural
characteristics: P is efficiently computable (i.e., it
is computationally easy to determine whether any
given function possesses property P) and more-
over many functions possess P—enough that a
random function would possess P with some non-
negligible probability. By exhibiting P , you would
indeed separate P from NP, but at the same time
you would do something else equally spectacu-
lar: you would break some of the strongest known
cryptosystems! Cryptographers consider a cryp-
tosystem broken if the outputs (a.k.a. ciphertexts)
of the encryption function E can be efficiently dis-
tinguished from random strings—or equivalently,
if E, when presented as a lookup table, can be
efficiently distinguished from a random function.
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But this can be done simply by checking whether

E possesses P ; any practical encryption function

will be computable in polynomial time and there-

fore will not possess property P—as opposed to a

random function, which will possess property P

with reasonably high probability.

Turning this around, if you believe that there do

exist secure cryptosystems, then your strategy for

proving that P 6= NP cannot be too simple-minded;

your proposed property P must either be difficult

to compute or it must focus on some very special

features of NP-hard functions that are not shared

by random functions.

For those who like precision, we now give a for-

mal statement of the Razborov–Rudich theorem.

(The reader not interested in technicalities may

skip ahead to just past the theorem statement

without loss of continuity.) By a Boolean function

on n variables we mean a {0,1}-valued function

on n {0,1}-valued variables. (We use the term

“Boolean” because we think of 0 as FALSE and 1

as TRUE.) We would like to measure the computa-

tional complexity of Boolean functions; to do so we

must consider not just a single Boolean function

but a sequence (fn), where each fn is a Boolean

function of n variables. If the minimum number

of ANDs, ORs, and NOTs needed to express fn is

bounded by a polynomial function of n, then we

write (fn) ∈ P/poly. It can be shown that if there

is a polynomial-time Turing machine that outputs

f|x|(x) for any input binary string x (where |x|

denotes the length of x), then (fn) ∈ P/poly. That

is, P ⊆ P/poly. Therefore, one strategy for showing

that P 6= NP is to show the stronger statement that

NP 6⊆ P/poly. It is this strategy that Razborov and

Rudich’s result addresses.
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More specifically, they consider properties of
Boolean functions that are not possessed by any
function in P/poly. A property is just a sequence
(Cn)where eachCn is a set of Boolean functions on
n variables, and to say that no function in P/poly
possesses the property means that if fn ∈ Cn for
infinitely many n, then (fn) ∉ P/poly. Notice that
Cn can itself be thought of as a Boolean function
on 2n variables, sending the truth table of fn
to 1 if and only if fn ∈ Cn. We say that (Cn)
is efficiently computable if it is in P/poly when
thought of as a sequence of Boolean functions
in this way. Finally, we say that many functions
possess the property (Cn) if Cn contains at least
2−O(n) of all Boolean functions on n variables. If a
property is simultaneously efficiently computable
and possessed by many functions, then we say
that it is natural. Then Razborov and Rudich’s
main theorem is:

Theorem. If there exists a natural property (Cn)
that is not possessed by any function in P/poly,
then there do not exist any 2n

ǫ
-hard pseudorandom

number generators.

The definition of a 2n
ǫ
-hard pseudorandom

number generator is somewhat technical, and we
will omit it here; suffice it to say that if fac-
toring integers or computing discrete logarithms
is sufficiently hard, or if any of various popular
candidates for symmetric-key cryptography is in-
deed secure, then 2n

ǫ
-hard pseudorandom number

generators do exist.
Note that the Razborov–Rudich theorem does

not mention NP specifically and therefore applies
equally to attempts along the same lines to prove,
for example, that P 6= PSPACE.

Why is the Razborov–Rudich theorem consid-
ered such a big deal? After all, even if one believes
in pseudorandom number generators, all their
theorem says is that a property that distinguishes
an NP-hard function from every P/poly function
must be either hard to compute or not possessed
by many functions. At first glance, this result may
seem to be just providing some guidance to some-
one trying to construct a suitable property, rather
than erecting a formidable barrier to this avenue
of proof.

Indeed, this optimistic interpretation is per-
fectly reasonable and was suggested by Razborov
and Rudich themselves in their paper. However, it
turns out that in practice, it is not so easy to dream
up candidate properties of NP-hard functions that
are provably not possessed by easily computed
functions and also not possessed by many func-
tions. Razborov and Rudich devote many pages of
their paper to analyzing proofs in the literature
that various explicit functions are hard to com-
pute, and they show that in example after example
the proofs rely on exhibiting natural properties.
(That so many proofs in the literature fall into

this category is their motivation for calling such
proofs natural.) Furthermore, they also show that
any attempt to construct a property in a certain
inductive manner, so as to produce something
they call a formal complexity measure, is doomed
to result in a property that is possessed by many
functions.

A further point to consider is that one of
the main techniques for producing properties
that are not easy to compute is diagonalization.
That is, one somehow enumerates all the easy-to-
compute functions and uses a version of Cantor’s
diagonal argument to produce a function not
in the list. While diagonalization arguments do
indeed produce properties that are not easy to
compute, they often suffer from another malady:
they usually relativize. Space does not permit
us to explain relativization in detail, but the
main point is that it has been known since a
1975 paper by Baker, Gill, and Solovay [2] that
relativizing arguments cannot possibly prove P 6=
NP. Thus Razborov–Rudich and Baker–Gill–Solovay
collectively shut off many tempting routes to
proving P 6= NP.

Nevertheless, it is my personal opinion that the
optimistic approach is the right one; that is, the
Razborov–Rudich result should be regarded as a
hint, and not a barrier, to separating complex-
ity classes. The only real barrier is our lack of
imagination.

For a more detailed exposition of natural proofs,
the interested reader is referred to the excellent
exposition by Steven Rudich [4, Lecture 8], as
well as of course Razborov and Rudich’s original
paper [3]. Eric Allender’s paper [1] is also highly
recommended as a source of ideas for how to
“think outside the box” of natural proofs.
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