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Digraph analogues of the Tutte polynomial

Timothy Y. Chow

Synopsis

This chapter considers analogues of the Tutte polynomial for directed graphs.
Although no fully satisfactory analogue of the Tutte polynomial exists for
directed graphs, this chapter discusses several candidates that have been pro-
posed.

• The cover polynomial and its multivariate generalizations—the cycle-path
indicator polynomial and the path-cycle symmetric function.

• Tutte invariants of alternating dimaps.

• Various digraph polynomials of Gordon and Traldi.

• The B-polynomial of Awan and Bernardi.

23.1 Introduction

A directed graph or digraph is a graph equipped with an orientation on each
edge. It is natural to ask if there is a digraph analogue of the Tutte polynomial.
Several proposals have been made, as discussed in this chapter. However, none
of them seems to lay claim to being the Tutte polynomial of a digraph, so
perhaps the correct analogue remains to be discovered, or does not exist.

One key difficulty is that it is not obvious how to define the contraction
D/e of a digraph D by an edge e. Chung and Graham [320] define contraction
in a way that prevents the creation of directed paths and cycles in D/e that
do not arise from directed paths and cycles in D. This allows them to define a
polynomial called the cover polynomial that obeys a deletion–contraction rela-
tion and has interesting connections to the chromatic polynomial and classical
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rook theory. There are also multivariate generalizations of the cover polyno-
mial due to D’Antona and Munarini [359] and Chow [316].

For alternating dimaps, which are special kinds of digraphs embedded in
a surface, Farr [480] has defined three minor operations and a notion of an
“extended Tutte invariant” that generalizes the Tutte polynomial of a planar
graph.

Instead of focusing on the definition of contraction, one can instead seek
analogues of the corank–nullity definition of the Tutte polynomial. In this
direction Gordon and Traldi [574, 575] have defined several possible digraph
analogues of the Tutte polynomial. More about some of these polynomials
may be found in Chapter 33.

Very recently, Awan and Bernardi [57] have defined the B-polynomial of
a digraph. If G is a graph and D is the digraph obtained by replacing each
undirected edge by a bidirected edge, then the B-polynomial of D is equivalent
to the Tutte polynomial of G. However, the deletion-contraction recurrence for
the B-polynomial does not express it in terms of B-polynomials of digraphs
with fewer edges, so there is no universality property.

Throughout this chapter, we write V (D) and E(D) for the vertex and edge
sets of a digraph D. If the end vertices of an edge are u and v then we write
u → v and think of the edge as being directed from u (the tail) to v (the
head). The reader is cautioned that in different sections, digraphs may have
additional restrictions placed on them.

23.2 The cover polynomial

In this section, unless otherwise stated, digraphs do not have multiple directed
edges, but may have loops and may have oppositely directed edges u→ v and
v → u.

Chung and Graham [320] defined a contraction operation on digraphs that
leads, via a deletion–contraction relation, to a polynomial called the cover
polynomial.

Definition 23.1. If e is an edge of D, then the deletion D\e is the digraph
obtained by deleting e from D.

Definition 23.2. If e = u→ v is an edge of D from a vertex u to a vertex v,
and u 6= v, then the contraction D/e is the digraph obtained by deleting all
edges leaving u (including e) and all edges entering v, and then merging u
and v into a single vertex. See Figure 23.1. If u = v, i.e., if e is a loop, then
the contraction D/e is the digraph obtained by deleting v and all its incident
edges.
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FIGURE 23.1: Chung–Graham contraction by a non-loop e.

Definition 23.3. The cover polynomial C(D;x, y) of a digraph D is defined
recursively as follows.

1. If In is the digraph with n > 0 independent vertices and no edges, then

C(In) = xn := x(x− 1) · · · (x− n+ 1). (23.1)

For n = 0, define C(I0) = 1.

2. If e is an edge of D that is not a loop, then

C(D) = C(D\e) + C(D/e). (23.2)

3. If e is a loop then

C(D) = C(D\e) + yC(D/e). (23.3)

Chung and Graham show that C(D;x, y) is well-defined, i.e., independent
of the order in which edges are chosen in the above recursive procedure.

Example 23.4. Let D be a digraph on two vertices u and v, with a loop on
u and two edges u→ v and v → u. Then C(D;x, y) = x2 + xy + x+ y.

Definition 23.5. A path-cycle cover of a digraph D is a subgraph consisting
of a disjoint union of directed paths and directed cycles such that every vertex
of D belongs to exactly one directed path or cycle. A path may have zero edges
and a loop counts as a cycle. We write cD(i, j) for the number of path-cycle
covers of D with i directed paths and j directed cycles.

The cover polynomial derives its name from the following basic result from
[320].

Theorem 23.6. For a digraph D,

C(D;x, y) =
∑
i,j

cD(i, j)xiyj .

Corollary 23.7. If a digraph D is formed by joining the disjoint digraphs D1

and D2 with all possible edges v1 → v2 with v1 ∈ V (D1) and v2 ∈ V (D2), then
C(D) = C(D1)C(D2).
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23.2.1 Connections with classical polynomials

If D = (V,E), we may visualize V ×V as a square chessboard, and E ⊆ V ×V
as a subset of that chessboard. We obtain a connection between the cover
polynomial and rook theory, which is the theory of enumerating the number
of ways of placing non-attacking rooks on E.

Theorem 23.8. If D = (V,E) has n vertices, then the number of (n − i)-
element subsets of E with no two elements in the same row or column is∑
j cD(i, j).

The theorem above is from [320]. In the context of rook theory, Gessel [519]
had earlier defined a two-variable polynomial that is very similar to the cover
polynomial.

Definition 23.9. If D is a digraph with n vertices then the cycle rook poly-
nomial r(D;x, y) is defined by

r(D;x, y) :=
∑
i,j

(−1)n−icD(i, j)xiyj . (23.4)

The single-variable polynomial from rook theory most closely related to
the cover polynomial is the n-factorial (rook) polynomial of Goldman, Joichi,
and White [554, 555], which in our notation coincides with C(D;x, 1). Among
other things, Goldman, Joichi, and White showed that the n-factorial poly-
nomial factors into linear factors for increasing Ferrers boards, (i.e., a subset
of the chessboard such that all squares below or to the right of an included
square are also included), and decreasing Ferrers boards (i.e., a subset of the
chessboard such that all squares below or to the left of an included square are
also included). Dworkin [429] generalized this result to the cover polynomial
(the result is stated in the following theorem). For increasing Ferrers boards,
the result was proved independently by Haglund (unpublished).

Theorem 23.10. The cover polynomials of increasing Ferrers boards and
decreasing Ferrers boards factor completely into linear factors.

The n-factorial polynomial of a board determines the n-factorial polyno-
mial of the complementary board. This fact extends to the cover polynomial,
as proved independently by Gessel (unpublished) and Chow [316].

The complement D of a digraph D is the digraph with the same vertex set
as D and with an edge u→ v (or loop u→ u) precisely when there is not an
edge u→ v (or loop u→ u) in D.

Theorem 23.11. Let D be a digraph with n vertices and D be its complement.
Then C(D;x, y) = (−1)nC(D; − x− y, y).

As Chung and Graham noted, the cover polynomial is also related to the
chromatic polynomial.
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Theorem 23.12. Let P = (V,≺) be a partially ordered set. Let D(P ) be
the digraph with vertex set V that has an edge u → v precisely when u ≺ v
in P . Let G(P ) be the incomparability graph of P , i.e., the undirected graph
with vertex set V in which u and v are adjacent precisely when u and v are
incomparable in P . Then

C(D(P );x, 1) = χ(G(P );x).

23.2.2 The cycle-path indicator polynomial

D’Antona and Munarini [359] have considered some digraph polynomials that
are closely related to the cover polynomial.

Definition 23.13. Let D be a digraph. The geometric cover polynomial
Ĉ(D;x, y) is defined by

Ĉ(D;x, y) :=
∑
i,j

cD(i, j)xiyj . (23.5)

Warning: D’Antona and Munarini write C(D;x, y) for what in our notation
is Ĉ(D; y, x) and write C̃(D;x, y) for what in our notation is C(D; y, x).

The polynomial Ĉ(D) satisfies the deletion–contraction relations (23.2)
and (23.3) (with Ĉ(D) replacing C(D) in the relations). However, Ĉ(D) sat-
isfies a different base case than C(D): in place of (23.1) we have Ĉ(In) = xn.
Also, Ĉ(D;x, y) = (−1)nr(D;−x, y), where r(D) is as defined in (23.4).

Example 23.14. For the digraph D in Example 23.4, Ĉ(D;x, y) = x2 +xy+
2x+ y.

More generally, D’Antona and Munarini define a multivariate cycle-path
indicator polynomial as follows.

Definition 23.15. A vertex-weighted digraph is a digraph, possibly with mul-
tiple edges, that has a nonnegative integer weight w(v) associated with each
vertex v.

Definition 23.16. Let D be a vertex-weighted digraph. Let x1, y1, x2, y2, . . .
be independent indeterminates. If β is a directed path or a directed cycle with
k vertices v1, . . . , vk, then define

Ind(β) :=

{
xk+w(v1)+···+w(vk), if β is a path;

yk+w(v1)+···+w(vk), if β is a cycle.

If C is a path-cycle cover of D, then define

Ind(C ) :=
∏
β∈C

Ind(β),
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where the product is over all directed paths and cycles β in C . Finally, define
the cycle-path indicator polynomial of D by

Ind(D) :=
∑
C

Ind(C ),

where the sum is over all path-cycle covers of D.

Example 23.17. For the D of Example 23.4, and assuming all the vertex
weights are zero, Ind(D) = x2

1 + x1y1 + 2x2 + y2.

It is easy to see that if all the vertex weights are zero and we set xi = x
and yi = y for all i, then the cycle-path indicator polynomial coincides with
the geometric cover polynomial.

The main result of [359] is a deletion–contraction relation for Ind(D).

Definition 23.18. Let D be a vertex-weighted digraph with an edge e.
The vertex-weighted digraphs D\e and D/e are formed by following Defi-
nitions 23.1 and 23.2 and weighting the resulting digraphs as follows. The
vertex weights of D\e are the same as the vertex weights of D. If u and v are
the original end vertices of e, then the weight of the vertex that they merge
into in forming D/e is defined to be w(u) + w(v) + 1.

Thus the vertex weights keep a record of edges that have been contracted.

Theorem 23.19. Let D be a vertex-weighted digraph with an edge e. If e is
not a loop, then

Ind(D) = Ind(D\e) + Ind(D/e).

If e is a loop on the vertex v, then

Ind(D) = Ind(D\e) + yw(v)+1 Ind(D/e).

23.2.3 Computational complexity

Nederlof [875, Section 5] has given a polynomial-space algorithm for comput-
ing the cover polynomial. In the other direction, Bläser et al. [140] have shown
that computing the cover polynomial is ]P-hard. (For definitions of standard
complexity classes, see for example Papadimitriou [907].) More precisely, we
have the following results from [140].

Theorem 23.20. Computing C(D; 0, 0), Ĉ(D; 0, 0), C(D; 0,−1), Ĉ(D; 0,−1),
and C(D; 1,−1) can be done in polynomial time. For any other fixed rational
numbers x and y, computing C(D;x, y) is ]P-hard with respect to polynomial-
time Turing reductions, as is computing Ĉ(D;x, y).

For the following theorem, we say that (x, y) ∈ Q2 has a root if there exists
a digraph D such that Ĉ(D;x, y) = 0.

Theorem 23.21. Let (x, y) ∈ Q2\ {(0, 0), (0,−1)}.
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1. If x ≥ 0 and y = 1, then there exists a fully polynomial randomized ap-
proximation scheme for computing Ĉ(D;x, y).

2. If 1 6= y > 0 and (x, y) has a root, then Ĉ(D;x, y) cannot be approximated
within any polynomial factor unless RP = NP.

3. If y ≤ 0 and (x, y) has a root, then Ĉ(D;x, y) cannot be approximated
within any polynomial factor unless RFP = NP.

Here RFP is the class of all functions computable by a BPP-machine.
One might expect that Theorem 23.21 also holds for the cover polyno-
mial C(D;x, y). However, except in certain special cases, this remains an open
problem.

23.2.4 The path-cycle symmetric function

Chow [316] defined a symmetric function generalization of the cover polyno-
mial called the path-cycle symmetric function that is analogous to the symmet-
ric function generalization of the chromatic polynomial defined and studied
by Stanley [1035] (see Section 26.3). To define it, we need some preliminaries
on symmetric functions.

A finite sequence λ = (λ1, . . . , λ`) of positive integers is said to be an
integer partition of n if λ1 ≥ · · · ≥ λ` and the sum of the λi’s equals n. The
λi’s are called the parts of λ.

Definition 23.22. Let x = (x1, x2, . . .) be a countably infinite sequence of
commuting independent indeterminates, and let n be a positive integer. The
power sum symmetric function pn is the formal power series

pn(x) := xn1 + xn2 + xn3 + · · · . (23.6)

Let λ = (λ1, . . . , λ`) be an integer partition of n. The power sum symmetric
function pλ is the formal power series

pλ(x) :=
∏̀
i=1

pλi(x). (23.7)

The augmented monomial symmetric function m̃λ is the formal power series

m̃λ(x) :=
∑

(i1,...,i`)

xλ1
i1
· · ·xλ`i` , (23.8)

where the sum is over all length-` sequences (i1, . . . , i`) of distinct positive
integers. If ` = 0 then we set pλ(x) = m̃λ(x) = 1.

Definition 23.23. Let x = (x1, x2, . . .) and y = (y1, y2, . . .) be two distinct
countably infinite sequences of mutually commuting independent indetermi-
nates. Let D be a digraph. If C is a path-cycle cover of D, let λ(C ) denote
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the integer partition whose parts are the lengths of the paths in C arranged
in decreasing order, and let µ(C ) denote the integer partition whose parts are
the lengths of the cycles in C arranged in decreasing order. The path-cycle
symmetric function Ξ(D; x,y) is the power series in x and y defined by

Ξ(D; x,y) :=
∑
C

m̃λ(C )(x)pµ(C )(y), (23.9)

where the sum is over all path-cycle covers C of D.

Example 23.24. For the digraph D in Example 23.4, Ξ(D; x,y) = m̃1,1(x)+
m̃1(x)p1(y) + 2m̃2(x) + p2(y).

Note that if D is acyclic, then Ξ(D) is a power series in the x variables
only.

The connection with the cover polynomial is given by the following propo-
sition (from [316]), whose proof is just a definition chase.

Proposition 23.25. If i of the x variables and j of the y variables are set
to 1 and the rest are set to zero, then Ξ(D) becomes a finite sum that evaluates
to C(D; i, j).

Unfortunately, the path-cycle symmetric function does not seem to satisfy
a deletion–contraction relation. However, several facts about the cover poly-
nomial generalize readily. The results stated in the remainder of this section
are from [316].

Proposition 23.26. If D, D1 and D2 are as in Corollary 23.7, then
Ξ(D; x,y) = Ξ(D1; x,y)Ξ(D2; x,y).

Proposition 23.27. Let P be a finite partially ordered set. In the notation
of Theorem 23.12, Ξ(D(P ); x,y) = X(G(P ); x), where X denotes Stanley’s
chromatic symmetric function (see Definition 26.45).

There is also a generalization of Theorem 23.11, but its statement and proof
are more involved. We need some more definitions. It is well known [1040,
Corollary 7.7.2] that the power-sum symmetric functions are algebraically
independent and generate the ring of symmetric functions as a Q-algebra.

Definition 23.28. Define an endomorphism ω on the ring of symmetric func-
tions by setting ωpn(x) = −pn(−x), where the notation “−x” indicates that
each variable xi should be replaced by −xi. Let fλ(x) := ωm̃λ(x) for any
integer partition λ.

Theorem 23.29. If D̄ is the complement of the digraph D, then

Ξ(D̄; x,y) =
∑
C

fλ(C )(x ∪ y)pµ(C )(−y), (23.10)

where the sum is over all path-cycle covers C of D, and x ∪ y denotes the
union of all the x and the y variables.
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We remark in passing that Theorems 23.11 and 23.29 are examples of com-
binatorial reciprocity theorems (theorems that give combinatorial interpreta-
tions of combinatorially defined polynomials evaluated at negative integers)
and have been generalized further by Haglund [597] and Lass [759] (see also
[315] and [553]).

Chow [316] proves several results about expanding Ξ(D) in terms of vari-
ous symmetric function bases for special digraphs. We mention just one such
result.

Theorem 23.30. If D is an acyclic digraph, then ωΞ(D) is a nonnegative
linear combination of power-sum symmetric functions.

Note that ωX(G) is also a nonnegative linear combination of power-sum
symmetric functions [1035, Corollary 2.7].

Chung and Graham [319] have generalized the cover polynomial to the ma-
trix cover polynomial, which is an invariant of a matrix with elements taken
from an arbitrary commutative ring with identity. The matrix cover polyno-
mial has a symmetric function generalization that is similar in spirit to the
path-cycle symmetric function.

23.3 Tutte invariants for alternating dimaps

In [480], Farr defined Tutte invariants and extended Tutte invariants for al-
ternating dimaps, which may be thought of as a special class of digraphs
equipped with additional structure.

Definition 23.31. An alternating dimap is a digraph with no isolated ver-
tices, cellularly embedded in a disjoint union of oriented surfaces, where each
vertex has even degree and, for each vertex v, the edges incident with v are
directed alternately into and out of v, when considered in the order in which
they appear around v in the embedding. An alternating dimap may have loops
and/or multiple edges, and may be empty (with no vertices, edges, or faces).

Definition 23.32. In an alternating dimap, the edges around a face are con-
sistently directed. A face is called a c-face or an a-face according to whether
this direction is clockwise or anticlockwise (i.e., with the orientation or against
it). Every edge lies on a c-face and also on an a-face; its right successor (re-
spectively, left successor) is the next edge along the c-face (respectively, the
a-face).

Definition 23.33. Let ω := exp(2πi/3) (not to be confused with the map ω
of Definition 23.28). A 1-loop is an edge whose head has degree two. An ω-loop
is an edge forming a single-edge a-face. An ω2-loop is an edge forming a single-
edge c-face. A triloop is an edge that is a 1-loop, an ω-loop, or an ω2-loop. An
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ultraloop is a triloop which, together with its vertex, constitutes a connected
component of the graph. (Note that an ultraloop is simultaneously a 1-loop,
an ω-loop, and an ω2-loop.) A triloop is proper if it is not also an ultraloop.

Next, we define the minor operations. For alternating dimaps, deleting an
edge e does not usually produce an alternating dimap, but if e is an ω-loop, an
ω2-loop, or an ultraloop, then its deletion is straightforward, and is denoted
by G\e.

Definition 23.34. If G is an alternating dimap and e is an edge of G, then
the 1-reduction or contraction G[1]e is defined as follows.

1. If the endpoints of e do not coincide, then G[1]e is formed by deleting
the edge e and identifying its endpoints, while preserving the order of the
edges and faces around vertices.

2. If e is an ω-loop or an ω2-loop, then G[1]e is formed just by deleting e.

3. Otherwise, let v be the vertex of e, and let the edges incident with v, in
cyclic order around v starting with e directed into v, be e, a1, b1, . . . , ak, bk,
e, c1, d1, . . . , cl, dl. So the ai and di are directed out of v while the bi and ci
are directed into v. Replace v by two new vertices, v1 and v2, and reconnect
the edges ai, bi, ci, di as follows. The tail of each ai and the head of each
bi become v1 instead of v, while the head of each ci and the tail of each
di become v2 instead of v. The edge e is deleted. The cyclic orderings of
edges around v1 and v2 are those induced by the ordering around v.

As compensation for the absence of a true deletion operation, we have two
other minor operations, ω-reduction and ω2-reduction.

Definition 23.35. If G is an alternating dimap and e is an edge of G, then
the ω-reduction G[ω]e (respectively, the ω2-reduction G[ω2]e) is formed as
follows. Let f be the left (respectively, right) successor of e, with tail v and
head w. Delete e and f , and, if e 6= f , replace them with a new edge g from
the tail of e to w. If the degree of v is two then v is deleted.

23.3.1 Simple Tutte invariants for alternating dimaps

The reduction operations give rise the following definition of a Tutte invariant
for alternating dimaps.

Definition 23.36. A simple Tutte invariant for alternating dimaps is a func-
tion F defined on every alternating dimap such that F is invariant under
isomorphism, F (∅) = 1, and there exist w, x, y, z such that, for any alter-
nating dimap G,

1. for any ultraloop e of G, F (G) = wF (G\e);

2. for any proper 1-loop e of G, F (G) = xF (G[1]e);
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3. for any proper ω-loop e of G, F (G) = yF (G[ω]e);

4. for any proper ω2-loop e of G, F (G) = zF (G[ω2]e);

5. for any edge e of G that is not an ultraloop or a triloop,

F (G) = F (G[1]e) + F (G[ω]e) + F (G[ω2]e).

However, it turns out that there are not many simple Tutte invariants, as
shown in [480].

Theorem 23.37. The only simple Tutte invariants of alternating dimaps are:

1. F (G) = 0 for nonempty G, with w = 0;

2. F (G) = 3|E(G)|, with w = x = y = z = 3;

3. F (G) = (−1)|V (G)|, with y = z = 1 and x = w = −1;

4. F (G) = (−1)c(G), with x = z = 1 and y = w = −1 (where c(G) is the
number of c-faces of G);

5. F (G) = (−1)a(G), with x = y = 1 and z = w = −1 (where a(G) is the
number of a-faces of G).

23.3.2 Extended Tutte invariants for alternating dimaps

Other definitions of Tutte invariants for alternating dimaps are possible.

Definition 23.38. Let G be an alternating dimap. A 1-semiloop is an edge
which is a loop in the underlying undirected graph of G. If e is an edge and f
is its right (respectively, left) successor, then e is an ω-semiloop (respectively,
ω2-semiloop) if

1. e = f , or

2. e 6= f and {e, f} is a cutset of G, or

3. e 6= f and deleting both e and f increases the genus of the underlying
undirected graph of G.

A 1-semiloop, ω-semiloop, or ω2-semiloop is proper if it is not a triloop.

Definition 23.39. An extended Tutte invariant for alternating dimaps is a
function F defined on every alternating dimap such that F is invariant under
isomorphism, F (∅) = 1, and there exist w, x, y, z, a, b, c, d, e, f , g, h, i, j,
k, l, such that, for any alternating dimap G,

1. for any ultraloop e of G, F (G) = wF (G\e);

2. for any proper 1-loop e of G, F (G) = xF (G[1]e);
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3. for any proper ω-loop e of G, F (G) = yF (G[ω]e);

4. for any proper ω2-loop e of G, F (G) = zF (G[ω2]e);

5. for any proper 1-semiloop e of G,

F (G) = aF (G[1]e) + bF (G[ω]e) + cF (G[ω2]e);

6. for any proper ω-semiloop e of G,

F (G) = dF (G[1]e) + eF (G[ω]e) + fF (G[ω2]e);

7. for any proper ω2-semiloop e of G,

F (G) = gF (G[1]e) + hF (G[ω]e) + iF (G[ω2]e);

8. for any edge e of G that is not an ultraloop or a triloop or a semiloop,

F (G) = jF (G[1]e) + kF (G[ω]e) + lF (G[ω2]e).

Farr shows that the Tutte polynomial of a planar graph may be viewed as
an extended Tutte invariant, as follows.

Definition 23.40. To any undirected graph G cellularly embedded in an ori-
ented surface we can associate two alternating dimaps altc(G) and alta(G) as
follows. For altc(G) (respectively, alta(G)), replace each edge e = (u, v) by a
pair of oppositely directed edges u → v and v → u, forming a clockwise (re-
spectively, anticlockwise) face of size two. The faces of G now all correspond to
anticlockwise (respectively, clockwise) faces in altc(G) (respectively, alta(G)).

Theorem 23.41. The Tutte polynomial of a plane graph G is an extended
Tutte invariant of altc(G) and of alta(G).

23.4 Gordon–Traldi polynomials

Gordon and Traldi [574, 575] introduced eight different polynomials f1, . . . , f8

for directed graphs, each of which is some kind of analogue of the Tutte poly-
nomial. Their general approach is to define a function ri, for 1 ≤ i ≤ 8, called
a rank function, on the edges of a digraph D, and then define a corresponding
Tutte-like polynomial fi by the corank–nullity formula

fi(D; t, z) :=
∑

A⊆E(D)

tri(E(D))−ri(A)z|A|−ri(A). (23.11)
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They also define functions ci, and define a Tutte-like polynomial by the for-
mula

fi(D; t, z) :=
∑

A⊆E(D)

tci(A)−ci(E(D))z|A|+ci(A)−|V (D)|. (23.12)

By setting ri(A) = |V (D)| − ci(A), we see that Equations (23.11) and (23.12)
give equivalent polynomials. For an undirected graph, we recover the Tutte
polynomial by setting ri(A) to be the cardinality of the largest acyclic subset
of A or ci(A) to be the number of connected components of D if the edge set
is restricted to A.

Not much is known about most of the polynomials f1, . . . , f8, other than
that various specializations of them count analogues of bases, spanning sets,
and independent sets. Therefore, in most cases, we limit ourselves to providing
just the definitions, referring the reader to [574, 575] for further details.

23.4.1 Polynomials for rooted digraphs

Gordon and Traldi first consider rooted digraphs, i.e., digraphs D with a dis-
tinguished vertex ∗ called the root.

Definition 23.42. A subgraph T of a rooted digraph is a ∗-rooted arbores-
cence if for every vertex v of T , there is a unique directed path in T from ∗ to v.
A ∗-rooted forest of arborescences is a vertex-disjoint union of arborescences
rooted at ∗, v1, v2, . . . for some vertices v1, v2, . . . .

Definition 23.43. Let f1, f2 and f3 be defined via Equation (23.11) using
the following rank functions respectively:

1. r1(A) := max {|T | : T ⊆ A is a ∗-rooted arborescence},

2. r2(A) := max {|T ∩A| : T ⊆ E(D) is a ∗-rooted arborescence},

3. r3(A) := max {|F | : F ⊆ A is a ∗-rooted forest of arborescences}.

The polynomials f1 and f2 can be defined for any greedoid (see Chap-
ter 33), and f1 in particular has been studied by Gordon and McMahon [570]
and McMahon [835]. We mention here one of the main theorems of the latter.

Definition 23.44. In a rooted digraph, an edge e from u to v is a greedoid
loop if v lies on every directed path from the root to u.

Theorem 23.45. Let D be a rooted digraph with no greedoid loops. Then D
has a directed cycle if and only if z + 1 divides f1(D; t, z).

23.4.2 Polynomials for unrooted digraphs

Definition 23.46. Let D a be an unrooted digraph. A set F ⊆ E(D) is a
forest of rooted arborescences if it is a vertex-disjoint union of arborescences
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rooted at v1, v2, . . . for some vertices v1, v2, . . . . Let r4(A) be the maximum
size of a forest of rooted arborescences contained in A, and let f4 be the
polynomial defined by setting r = r4 in Equation (23.11).

Definition 23.47. A digraph D is strongly connected if, for every pair of
vertices u and v, there exists a directed path from u to v. Let f5 and f6 be
defined via Equation (23.12) using the following functions respectively:

1. c5(A) := the number of strongly connected components of D if the edge
set is restricted to A;

2. c6(A) := 1 + the smallest cardinality of a set R of (directed) edges such
that R ∪ A strongly connects all the vertices of D. (The edges of R may
or may not be edges of D.)

23.4.3 Order-dependent polynomials

Finally, we describe f7 and f8. In the case of f7, we follow Gordon and Traldi
by giving the recursive definition directly instead of describing r7.

Definition 23.48. Let D be a rooted digraph, with root ∗. An edge in D is a
2-isthmus if it is in every maximal ∗-rooted arborescence, and is a 2-loop if it
is in no maximal ∗-rooted arborescence. A 2-loop whose initial and terminal
vertices coincide is called an ordinary loop; otherwise, a 2-loop is called a
reversed loop.

Definition 23.49. Let D be a rooted digraph whose underlying undirected
graph is connected, and let D be equipped with a total ordering O of its edges.
We define a polynomial f7(D,O;x, y, z) as follows.

1. If D = {∗}, then f7(D) = 1.

2. Let e be the first edge in the ordering O which emanates from ∗.

(a) f7(D) = xf7(D/e) if e is a 2-isthmus, where D/e is the digraph
obtained from D by identifying the end vertices of e and deleting e.

(b) f7(D) = yf7(D\e) if e is an ordinary loop.

(c) f7(D) = f7(D\e) + f7(D/e) otherwise.

3. If no edge emanates from ∗, then let e be the first edge directed into ∗, so
that e is a reversed loop. Then f7(D) = zf7(D/e).

Definition 23.50. Let D be a rooted digraph equipped with a total ordering
of its vertices. Let r8(A) be the maximum size of a subset ofA that is a ∗-rooted
forest of arborescences in which each arborescence is rooted at its least vertex,
and let f8 be the polynomial defined by setting r = r8 in Equation (23.11).



Digraph analogues of the Tutte polynomial 439

23.5 The B-polynomial

Recently [57], Awan and Bernardi have defined a three-variable digraph poly-
nomial that they call the B-polynomial. Given a function f : V (D) →
{1, 2, . . . , q}, let γ(f) be the number of edges u → v in E(D) such that
f(v) > f(u), and let λ(f) be the number of edges u → v in E(D) such
that f(v) < f(u). Then

B(D; q, y, z) :=
∑

f :V (D)→{1,2,...,q}

yγ(f)zλ(f).

They show that if G is an undirected graph, and D is the directed graph
obtained by replacing each edge (u, v) of G with the pair of directed edges
u → v and v → u, then B(D; q, y, z) is equivalent, up to change of variables,
to the Tutte polynomial of G. In this sense, the B-polynomial generalizes the
Tutte polynomial.

The B-polynomial does satisfy a certain kind of deletion-contraction re-
currence, but the recurrence does not express B(D; q, y, z) in terms of the
B-polynomials of digraphs with fewer edges, and so it does not yield any “uni-
versality” property. However, the B-polynomial does detect several important
properties of a digraph, such as acyclicity, the length of the longest directed
path, and the number of strongly connected components. It also satisfies a
partial planar duality relation.

The B-polynomial has a generalization to a quasisymmetric function in
two sets of variables, which yields a digraph generalization of Stanley’s sym-
metric function generalization of the Tutte polynomial. It also generalizes El-
lzey’s chromatic quasisymmetric function (in one set of variables) for digraphs
[464], which in turn is a generalization of Shareshian and Wachs’s chromatic
quasisymmetric function of a graph [1001].

23.6 Open problems

1. Does there exist another definition of a digraph Tutte polynomial that is
more satisfying than the ones given in this chapter?

2. Does Theorem 23.21, or something like it, hold for the cover polynomial?

3. If P is a unit interval order, is Ξ(D(P )) a nonnegative combination of
elementary symmetric functions? This is an old conjecture of Stanley and
Stembridge [1044].

4. Characterize all extended Tutte invariants for alternating dimaps. See
[1182] for some recent progress on this question.
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