PROOF TECHNIQUES IN THE THEORY OF
FINITE SETS*

Curtis Greene and Daniel J. Kleitman

1. INTRODUCTION

This paper is a survey of a class of methods which have proved
successful in attacking certain problems in the theory of finite sets.
Specifically, we will be concerned with extremal problems: i.e.,
given a family F of finite sets, satisfying certain restrictions, how
large can F be? Typically, an answer to this question leads to a
classification of the extremal cases, so that many of the results in
this paper are ultimately structural as well as numerical.

No attempt has been made to provide a complete survey of the
field: many beautiful results which do not fit into our (perhaps
rather arbitrary) scheme have been omitted entirely. And although
we have included a wide variety of problems, our motivation in

choosing them has been at least partially based on how well they’

illustrate certain techniques. For a more encyclopedic treatment,
we recommend the survey articles by Katona [30] and Erdds and
Kleitman [16].
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Because our goal is to study techniques, we shall also investigate
the extent to which these techniques can be generalized to a wider
class of combinatorial objects. Specifically, we will attempt—
wherever possible—to extend results about families of sets to more
general kinds of partially ordered structures, with a special
emphasis on three important combinatorial examples: multisets
(or divisors of an integer), subspaces of a finite vector space, and
partitions of a set. The structures formed by these combinatorial
objects are analogous in many ways to Boolean algebras of sets,
and provide a rich source of problems. By using them as examples,
we hope to illustrate both the power and the limitations of the
methods described.

It should be mentioned that our systematic treatment of the
analogies between families of finite sets and other combinatorial
objects is very much in the spirit of ideas originally suggested
by Rota (see, for example, [21], [S1], or {63]).

THE SPERNER PROBLEM

If P is a partially ordered set, an antichain of P is a subset of P
whose elements are totally unrelated (as opposed to a chain, whose
elements are totally related). One of the earliest results of the kind
considered in this paper is a theorem about antichains of sets, due
to E. Sperner and published in 1928:

TueoreM 1.1 (Sperner): Let F be a family of subsets of {1,
2, ..., n}, no member of which contains another. Then |F| =

( n ) Equality occurs only if all of the sets have the same size.

Given an arbitrary partially ordered set P, we can ask a similar
question: what is the size of the largest antichain in P? In this
paper, we will describe a number of ways to approach this problem,
and many of the results discussed can be viewed as extensions,
refinements, or analogs of Sperner’s fundamental theorem.
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For arbitrary partially ordered sets, the problem of finding a
maximum-sized antichain can be expressed as a network flow
problem and solved (efficiently) by standard techniques (see [S8]
for a description of an elementary algorithm). We will not be con-
. cerned with the problem in such generality, but rather with special
cases where the answer has a simple form.

" Suppose that P is a partially ordered set with a rank function r.
That is, r is a function defined on the elements of P, taking non-
negative integer values, such that »(x) = 0 for every minimal
element x, and r(x;) = r(x2) + 1 whenever x; covers x,. For each
integer k, let Py denote the collection of elements in P having rank
k. Clearly each P, is an antichain. When P consists of all subsets
of a finite set, rank coincides with cardinality, and Sperner’s
theorem asserts than an antichain of maximum size can be ob-

tained by taking all elements of rank [ % ] In general, we say

that P has the Sperner Property if the maximum size of an anti-
chain in P is equal to max | Pel.

WHITNEY NUMBERS

The following notation will be useful when considering more
general classes of partially ordered sets: if P has a rank function,
let Ni(P) denote the number of elements of rank k in P (i.e.,
Ni(P) = | Px|). Following Crapo and Rota [8], we call Nx(P) the
kth Whitney number of P (of the second kind).*

There are four basic families of partially ordered sets considered
in this paper: sets, multisets, subspaces, and partitions. We
describe each of them briefly below, including a calculation of the
appropriate Whitney numbers for each class:

(1) Sets: Let B, denote the Boolean algebra of all subsets of
{1, 2, ..., n}, ordered by inclusion. Then, as noted before, B
has a rank function #(s) = |§|, and

*When there is no chance of confusion, we will write Nx(P) = N, and if x € P
we also write Ny (P) = N (P) = N,.
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n!

NeB) = e — T (z) ,

(2) Multisets: Fix a sequence € = (ey, €2, ...), where each e;
is either a nonnegative integer or + oo. Let Mz denote the collec-
tion of all “finite multisets of integers with multiplicities restricted
by & By this we mean the family of all finite unordered collec-
tions of positive integers, where repetitions are allowed but each i
can appear at most e; times. Each multiset in Mz can be represen-
ted by a sequence & = (o, 03, ...,) of nonnegative integers o;
such that 0 < o; = e for each i and also Lg; < o. For two multi-
sets gand @7, define T s 7 if 6; = &' for all i. Under this order-
ing Mz is a distributive lattice—in fact Mz is isomorphic to a carte-
sian product of chains.

It is easy to see that M has a rank function given by (@ =
Ta;, and that Nx(M;) is the coefficient of x* in the expression

T+ x + oo + 29

(with the obvious convention ife; = o). We also introduce the nota-
tion

15 €24 0
Ne(Mp) = ) .
k

Although these numbers are more difficult to work with than bi-
nomial coefficients, one can obtain a trivial analog of the binomial
recursion: if &' is obtained from & by replacing e. by 0, for some

m, then
€1, 82, +.. em e,',ez',...
k _:=20 k—1i

(where, by convention, a term vanishes if & — ¢ is negative).
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Whene, = e = -+ = € = ®, €41 = &as2 = -+ = 0, we
call M; the lattice of unrestricted (finite) multisubsets of {1, 2,
..., n}. In this case, Nx(Mp) is the coefficient x* in the expres-
sion (1 — x)™, and we obtain the explicit formula

NeM) = (—1 ( ‘k”) =( nrke 1) .

(2") Divisors of an integer: If N is any positive integer, let Dy
denote the lattice of divisors of N, ordered by the relation of divis-
ibility. If N = pps= --- ps* is the prime decomposition of N,
the divisors of N can be thought of as multisets of primes, with
multiplicities restricted by ey, ez, ..., €, and the ordering of mul-
tisets coincides with that of divisors. Hence Dy is isomorphic to
-Mz, where€ = (e, €2, ..., e, 0,0, ...).

If we take e; = oo for all i, then My is isomorphic to the lattice
of all positive integers, ordered by divisibility.

(3) Subspaces: Let L,(q) denote the lattice of subspaces of a
vector space of dimension n over a field of g elements, ordered
by inclusion. Then L.(g) has a rank function r(U) = dim (U),
and

(qn —_— 1) (qn-l _1) .o (qn*—k"'l ._1) _ [n:]
q

ML) = = =g —D - @ - D k

These numbers are called Gaussian coefficients, and are poly-
nomials in g for fixed n and k, as can be seen from the recursion

e e 2o ol

It is interesting to note that

i), = &)
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(4) Partitions: Let II, denote the collection of all partitions of
the set {1, 2, ..., n}, ordered by refinement. That is, 0 < 7if ¢
can be obtained by subdividing the blocks of 7. It is well known
that II, is a lattice, with a rank function r defined by r(e) = n —
| o], where |o| denotes the number of blocks of ¢. The Whitney
numbers of II, are given by

N(IL) = S(n, n — k),

where S(n, n — k) denotes a Stirling number (of the second kind).
Although no explicit formula for the Stirling numbers is known,
it is easy to derive the recursion

Stn+ 1,k)=8@n k— 1)+ kS k).

Among the four classes of partially ordered sets described here,
it is known (and we shall prove) that three have the Sperner Prop-
erty: sets, multisets, and subspaces. For partitions, however, the
answer is still not known, and is the subject of a long-standing
conjecture of Rota [51]. (Note added in proof: Rota’s conjecture
has recently been settled in the negative by E. R. Canfield.)

2. SYMMETRY

We begin this section by giving one of the shortest known proofs
of Sperner’s theorem (although it turns out to be one of the least
capable of generalization). The proof rests on the following obser-
vation, due to Kleitman, Edelberg, and Lubell [43]:

LeMMa 2.0: Every partially ordered set P contains an antichain
of maximum size which is invariant under every order-automor- :

phism of P.

" To see that Sperner’s theorem follows from this fact, cbserve
that any invariant antichain in B, must consist of all sets of some

fixed size i, Such a family has (:’) members, which is maximized

when i = [n/2].
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Freese [20] observed that Lemma 2.0 can be proved in the fol-
lowing way: define an ordering on antichains of P by saying A =
B if every member of A is dominated by some member of B. If A
and B are two antichains, define A v B to be the antichain of max-
imal elements in the set A U B. TriviallyA<Av Band B<Av B.

. Moreover if A and B are antichains of maximum size, it is easy to
see that A v B is again of maximum size. Repeating this opera-
tion, we obtain a maximum-sized antichain which is “largest” in
the sense of the ordering just defined. This antichain must be in-
variant under every automorphism of P, and the lemma is proved.

Freese’s argument is based on ideas of Dilworth [13], who
showed that the maximum-sized antichains of a partially ordered
set P form a distributive lattice, which is a sublattice of the (dis-
tributive) lattice of all antichains in P.

It is clear that the same arguments prove the following:

THEOREM 2.1: If P is a partially ordered set with rank function
whose automorphism group is transitive on each set of elements of
fixed rank, then P has the Sperner property.

As a consequence, we obtain:

CoRrOLLARY 2.2: For each n and q, L,(q) has the Sperner prop-
erty.

Unfortunately, the hypotheses of Theorem 2.1 do not hold (in
general) for either lattices of multisets or lattices of partitions.

A more general class of problems to which these methods apply
can be described as follows: a subset A < P is called a k-family
of P if A contains no chains of length k + 1. Erdos proved the
following [15]:

THEOREM 2.3: Let F be a family of subsets of {1, 2, ..., n}
that contains no chains of length k + 1. Then |F| is bounded by
the sum of the k largest binomial coefficients.
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Greene and Kleitman [23] showed that Theorem 2.3 could also
be proved by an argument of the Dilworth-Kleitman-Freese type.
If A and B are k-families of P, define A; and B; to be the elements
of “depth” i in A and B respectively (the depth of an element x
¢ A is the length of the longest chain in A whose bottom is x). De-
fineA < BifA; = Bifori =1, 2, ..., k. Then the following can
be proved:

TrHEOREM 2.4: If P is any partially ordered set, then for each k
there exists a k-family of maximum size which is largest with re-
spect to the ordering just defined. and hence is invariant under
every automorphism of P.

COROLLARY 2.5: The analog of Theorem 2.3 holds in Lq) for
every n and q, and, more generally. in any partially ordered set
whose automorphism group is transitive on elements of a given
rank.

The proof of theorem 2.4 is not immediate for £ > 1. In section
4 we will see that easier proofs of Erdds’ theorem and its analogs
are available.

3. SATURATED PARTITIONS

In this section, we describe a method for proving Sperner’s
Theorem which applies to lattices of sets and lattices of multisets,
but (apparently) not to lattices of subspaces or partitions.

Let P be an arbitrary partially ordered set, and let € = {C,
C, ..., C,} be a partition of P into chains Ci. Then C determines
a bound on the size of the largest antichain in P: since chains and
antichains have at most one element in common, no antichain in
P can have more than g elements. When the bound determined
by € is exact, we call € a saturated partition of P.

By a famous theorem of Dilworth [14], saturated partitions
always exist. This means that, if an antichain 4 £ P is of maxi-
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mum size, it is always possible to verify this by finding a partition
of P into | A | chains. ’ SEP

To prove Sperner’s Theorem by this method, we must find a

way to partition B, into <[ " D chains, for each n. We shall give

2

an in‘ductive proof that such partitions exist, based on a con-
struction discovered by deBruijn, Tengbergen, and Kruyswijk [S]
and rediscovered by a number of others.

The essential feature of this conmstruction is that the chains
turn out to be symmetric: that is, they stretch from a set of size k
to a set of size n — k, for some k, meeting every intermediate
rank. Trivially, if B, is partitioned into symmetric chains, the

number of chains is exactly <[ : ) .
2

The construction is as follows: suppose that the subsets of {1, 2,
..., n — 1} have been partitioned into symmetric chains. For
each chain C of length k = 1, construct a second chain C' by
adding 7 to each set in C. Then construct two new chains in B, by
removing the top of C’ and adding it to C. The new chains have
lengths £ — 1 and & + 1, and trivially both are symmetric. (If
€’ becomes empty at this stage it is disregarded.) Applying this
procedure to every chain gives a partition of B, into symmetric
chains as desired.

DeBruijn, Tengbergen, and Kruyswijk showed that a minor
modification of this procedure works for divisors of an integer as

well. That is, the divisors of an integer N = I pfi can be parti-
=1

tioned into Nx(M7) symmetric chains, where k = [Ze;/2]. (We omit
the details.)

Greene and Kleitman [24] and independently Leeb [unpublished]
found that the partition constructed above could be described
explicitly in the following way:

First as.sociate to each subset § < {1,2, ...,n} 2 sequence of
left and rfght parentheses, replacing each element of S by a right
parenthesis, and each element of the complement of § by a left

PROOF TECHNIQUES IN THE THEORY OF FINITE SETS 31

parenthesis. For example, if » = 9 and § = {1, 3, 4, 7, 8}, we

obtain the sequence
) () )y ¢ ) ) (
1 23456 789

et | E—

Every sequence of left and right parentheses has a unique *paren-
thesization” obtained as follows: close all pairs of left and right
parentheses which are either adjacent or separated by other such
pairs, repeating the process until no further pairing is possible.
Note that the remaining unpaired parentheses must necessarily
consist of *rights” followed by *‘lefts™.

Now define a partition of B, by saying that two sets are in the
same block if they have the same ‘parenthesization”. From the
above remark about unpaired elements, it follows that two sets in
the same block must be comparable; hence we have partitioned B,
into chains. In general, a chain in this partition is obtained by
starting at the bottom with a set of elements which can be com-
pletely paired, and adding the unpaired elements from left to
right, one at a time.

For example, the chain in By which contains § = {1, 3, 4, 7, 8}
consists of the sets {3, 7, 8}, {1,3,7,8}. {1,3,4,7,8},{1,3,4,
7, 8, 9}. obtained by adding 1, 4, and 9 in order to {3, 7, 8}.

It is immediate that the chains constructed in this way are all
symmetric, and that the procedure coincides exactly with the one
defined inductively by deBruijn, Tengbergen, and Kruyswijk.

Using the above construction, it is possible to obtain the con-
clusion of Sperner’s theorem from slightly weaker hypotheses. It is
easy to see that the “unpaired” elements alternate odd-even (since
blocks of consecutive paired elements are always even in number);
hence the difference of any two members of the same chain is

a set which alternates “odd-even”. Hence the bound of ( [ 2 .D re-

2
mains valid if we exclude only comparable pairs of sets whose dif-
ference alternates odd-even. A slightly weaker result (arising from
a stronger hypothesis) can be expressed in terms of colorings. If
a set X has been colored with two colors—say red and blue—we
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call the coloring balanced if the number of reds differs by at most
one from the number of blues.

CoroLLARY 3.1: Suppose that {1, 2, ..., n} has been given a
balanced coloring. If F is a family of subsets containing no com-
parable pairs of sets whose difference is balanced, then |F| =

()

Corollary 3.1 follows from our previous observation if we re-
number the elements so that the coloring is represented by odds
and evens. .

Corollary 3.1 contrasts with another extension of Sperner’s
theorem obtained independently by Kleitman [35] and Katona [31].

TaEOREM 3.2: Suppose that the elements of {1, 2, ..., n} have
been given an arbitrary 2-coloring. Let F be a family of sets con-
taining no comparable pair whose difference is monocolored. Then

"= () |

The proof of Theorem 3.2 is as follows:

Suppose that the coloring partitions {1, 2, ..., n} into two
parts X and Y. We apply our partitioning procedure separately to
the lattices Bx and By, producing a collection of symmetric chains
for each. Since B, is isomorphic to the cartesian product By X By,
we can partition B, into “symmetric rectangles” by taking all pos-
sible products of pairs of chains, one from Bx and the other from
By. If F is a family which satisfies the conditions of Theorem 3.2,
it is clear that no rectangle contains two members of F in the same
row or column. It follows immediately that in each rectangle the
number of elements of F is bounded by the number of elements of
n

2

( [ Z D members altogether.
2

size [ ] . Since the rectangles partition B,, F can have at most
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We show next how the methods of this section can be used to
derive an upper bound on the total number of antichains in B,.
This is a problem originally posed by Dedekind, and can be re-
phrased in several ways: for example, it is equivalent to finding a
bound for the size of the free distributive lattice on » generators.
The argument presented here is due to Hansel [61].

TueoreM 3.3: The number of antichains in B, is at most

Proof: Antichains in B, are in one-to-one correspondence with
monotone Boolean functions on B,, that is, order preserving maps
from B, to the set {0, 1}. We can construct such functions in the
following way: take the chains in the deBruijn-Tengbergen-Kruys-
wijk partition, and beginning with the smallest chains first, assign
values 0 and 1 to the members of each chain, consistent with the
requirements of monotonicity. It can be shown easily that a chain
always has at most two unassigned elements (which in fact must be
adjacent), once values have been given to the members of all smal-
ler chains. These two elements can be assigned values in at most
three ways, and the bound follows immediately.

By a much more difficult argument (based on the same ideas)
Kleitman [62] has improved this bound to

(IEO (1 + Ol(log r)/n))
2 2

This result can be interpreted as saying that ‘‘most” antichains '

in B, are obtained by taking collections of sets of size [g—} .

The method of parenthesizations can be extended readily to
lattices of multisets. To each element (o1, 02, ..., 0n) € My (where
€ = (e, es, ..., e,)) associate a sequence of Le; left and right
parentheses, as follows: first ¢y right parentheses, then e; — oy left,
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then o, right, e, = o, left, and so forth. Now define two elements
¢ and 7 to be equivalent if the corresponding sequences have the
same basic parenthesization. Then all of the previous arguments
carry over, and we obtain a partition of My into symmetric chains.
This is equivalent to the partition obtained (inductively) by
* deBruijn, Tengbergen, and Kruyswijk [S].
. It would be extremely interesting to obtain a similar explicit
construction for lattices of subspaces, but none is known.
Our proof that My can be partitioned into symmetric chains
actually proves that the analog of Erdds’ theorem for k-families
holds as well:

TrEOREM 3.4: If F is a family of multisets & € Mz which con-
tains no chains of length k + 1, then |F| is bounded by the
largest sum of k Whitney numbers N{Ms).

A similar result holds for every partially ordered set which can
be partitioned into symmetric chains—that is, the maximum size
of a k-family is equal to the sum of the & largest Whitney num-
bers. In such cases, the “largest k™ will always be the “middle &
(which of course may not be unique). ’

We conclude this section by mentioning a result of Greene and
Kleitman [23] which shows that—in principle—the maximum size
of a k-family in any partially ordered set can always be computed
by looking at the right partitions of P into chains.

THEOREM 3.5: Let P be an arbitrary partially ordered set. Then
the maximum size of a k-family in P is equal to the minimum,
over all partitions € = C,, C3, ..., C, of P into chains C, of the
expression

q
L min {|C;

K},

This result reduces to Dilworth’s theorem if k = 1.
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4, THE LYM PROPERTY

We begin this section with a third proof of Spernet's theorerp,
due independently to Lubell [48], Yamamoto [57], and Meschalkin
[50]. This method is much more powerful than those discussed
in earlier sections, and a large number of generalizations and ex-
tensions are possible. In contrast to previous methods this ap-
proach applies simultaneously to lattices of sets, multisets, and
subspaces (but again not to partitions).

A maximal chain in B, is a sequence of sets ® = Xo c Xh C -+~
C X, where | X;| = i for each i. There are exactly n! maximal
chains in B., and exactly k!(n — k)! pass through a given set §
of size k. If F is an antichain in B,, then each maximal chain con-
tains at most one member of F, and so

L S|l — |S) = nl.
SeF

If we denote by fx the number of sets in F of size k, this inequality
becomes

%) £

n
n n . . .
2 1) for all k, and it follows immediately that
But (k) < ([2 ]) or a

The inequality (*) is actually a stronger statement than Sperner:s
theorem. We refer to (¥) as the Lubell-Yamamoto-Mescha{km
(LYM) inequality. If a partially ordered set P has a rank function,

and if

1
xg’ Nx

—y S
=N -1
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holds for every antichain F € P, we say that P has the LYM
Property. Clearly the LYM property always implies the Sperner
property.

The above derivation of the LYM inequality uses only the fol-
lIowing property of sets: for each set S of size k, the number of
maximal chains which pass through S depends only on k& and not
on S. Hence by a similar argument, we obtain an important suf-
ficient condition for a partially ordered set to have the LYM prop-
erty.

TreorREM 4.1: If P is a partially ordered set with a rank func-
tion, and if each element of rank k in P is contained in the same
number of maximal chains of P (for all k), then P has the LYM
property.

The next observation is due to Baker [2].

CoroLLARY 4.2: If P is “regular” in the sense that for every k,
each element of rank k covers the same number of elements of
rank k — 1 (and dually), then P has the LYM property.

To prove Corollary 4.2, observe that the number of maximal
chains through a given element is completely determined by the
“‘covering numbers”, and hence depends only on rank.

In section 2 we proved that the Sperner property holds if the
automorphisms of P are transitive on elements of fixed rank.
Corollary 4.2 shows that a stronger conclusion (the LYM property)
follows from a much weaker assumption (regularity).

CoroLrArY 4.3: For all n and q. L,(q) has the LYM property
(and hence the Sperner property).

The conditions of theorem 4.1 do not hold for lattices of multi-
sets. However, it turns out that the LYM property remains true,
for much deeper reasons to be discussed later (see Corollary 4.12).
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Kleitman observed [37] that the hypotheses of Theorem 4.1 can
be siguificantly weakened:

TueorEM 4.4: Let P be a partially ordered set with a rank func-
tion. Suppose that there exists a nonempty collection C of maxi-
mal chains in P (not necessarily distinct) such that, for each k,
every element of rank k occurs in the same number of chains in C.
Then P has the LYM property.

If the conditions of Theorem 4.1 hold, we can take € to be the
collection of all maximal chains in P. More generally the argument
works as before: each element of rank k& must occur in exactly
| € |/Nx members of C. Hence if F is an antichain, we have

Eﬁ% = |€]

and the LYM inequality follows.

A collection of chains @ which satisfies the hypotheses of
Theorem 4.4 will be called a regular covering of P by chains.
Surprisingly, the existence of such coverings turns out to be equ.iv-
alent to the LYM property. In fact, both are equivalent to a third
hypothesis introduced independently by Graham and Harper [22],
called the normalized matching property. This property can be
described as follows:

If A is any subset of elements of rank k in P, let A* denote the
set of elements of rank & + 1 which are related to some element

of A. If

141 10
Ny = Nin

for every k and every such A4, then P is said to have the normalized
matching property. . .

For lattices of sets, the statement of normalized matching prop-
erty is equivalent to the following elementary but useful lemma

(apparently due originally to Sperner [S6]):
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LeMMA 4.5: Let A be a collection of k-subsets of {1, 2, ..., n}
and let A* be the collection of (k + 1)-subsets which contain
members of A. Then

kE+1
%
kIA [

4| =

n—
Kleitman [37] proved the following:

THEOREM 4.6: For a partially ordered set P with a rank func-
tion the following conditions are equivalent:

(1) P has the LYM property.
(2) P has the normalized matching property.
(3) There exists a regular covering of P by chains.

The implication (3) ~ (1) has already been observed (Tl:leorem
4.4). We complete the proof of Theorem 4.6 in two steps:

(1) = (2). Suppose that P has the LYM property, and 4 is a set
of elements of rank k. Let Pi+: denote the elements in P of rank
k + 1. Then A U (Px+1 — A*) is an antichain of P, so that by the
LYM inequality we have

[4] [Piyr — A¥|
Pl B 747
Ny N+ =

But this inequality trivially implies

14] _ 14%

Ni Nesy

(2) — (3) Assume that the normalized matching property holds,
and define M = ILI:N;. Define a new partially ordered set P’ as
follows: for each i, take M/N; copies of the elements of rank 7 in
P, with each copy of x less than each copy of y if x < y in P. It is
trivial to show that the normalized matching property for P implies
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the existence of ordinary matchings between successive ranks of
P’, using P. Hall's matching theorem {26]. Putting these matchings
together, we obtain a collection of M maximal chains in P which
cover each element of rank k exactly M/N; times. This completes
the proof.

If P has the LYM property, there is an important analog of the
LYM inequality which holds for all subfamilies of P, and permits
arbitrary weighting of the elements of P.

TueoreM 4.7: Let P be a partially ordered set with the LYM
property, and let \ be a real-valued function defined on P. For
any subset G = P

A
~— < max L
CeC peCNG

)y

x€G x

Here @ denotes a regular covering of P by chains. The proof can
be expressed easily in probabilistic language, as follows: choose a
chain C at random from € and record the sum ec;c:'mc)\" This de-

i

fines a random variable on € whose expected value and maximum
value are given, respectively, by the left and right hand sides of the
inequality in Theorem 4.7. This proves the theorem.

By taking Ac = N: in Theorem 4.7, we obtain the following
corollary:

COROLLARY 4.8: If P has the LYM property, and G is any sub-
set of P, then

161 = max M-

We mention three examples of applications of Corollary 4.8, to

- give the reader some idea of its usefulness. The results are stated

for lattices of sets, but the obvious analogs hold for any partially
ordered set with the LYM property.

. ..
THEOREM 4.9: Let G be a family of subsets of {1, 2, .., n}.
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(D) (Exdss [15).) If G contains no chains of length k + 1, then
|G| is at most the sum of the k largest binomial coefficients

(2)-

(ii) (Erdods [15].) If G contains no two members A = B with
|A — B| = k, then |G| is at most the sum of the k largest bi-
nomial coefficients (n)

i

(iii) (Katona [32).) If G contains no two members A 2 B with
|A = B| < &, then |G| is bounded by the largest sum of the
Jorm

‘? (a -: ki)'

Many similar results can be obtained by considering other re-
strictions on subfamilies. A bound of the form

L N(P)
keS

for some set § of indices can always be obtained in this way, al-
though it will not always be the best possible bound. A best bound
is obtained only when the corresponding union of “levels” obeys
the restriction in question.

When P does not possess symmetry (or regularity), it is usually
difficult to tell whether or not the LYM property holds. However,
under certain conditions it can be shown that the LYM property is
preserved under direct products. The following result was obtained
first by Harper [27] and independently by Hsieh and Kleitman
[29]:

TuEOREM 4.10: Let Py and P, be partially ordered sets, such
that
(i) both P, and P; have the LYM property, and
(ii) the Whitney numbers of P: and P; are logarithmically concave
(i.e.. Nkz = Ng-l Nk+,for all k).
Then both (i) and (ii) hold in the cartesian product P, X P;.
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In fact, condition (ii) is preserved under products, independe.ntly
of (i). Note that the Whitney numbers of P, X P, are obtained
from those of P, and P, by convolution. That is,

NP X Pp) = +J¥=k N{PON{P)).

LemMA 4.11: The convolution of two logarithmically concave
sequences is logarithmically concave.

(The proof is not difficult and is omitted; see [27] or [29].) .
We proceed now to the proof of Theorem 4.10. The first step is
based on an idea which can be regarded as an ‘.‘LYM~
analog” of Theorem 3.2. Let €, and @; be regular coverings of
P, and P, by chains. By taking all possible products C; X G, gf
chains C; € @ and C; € @, we can cover Py X P; by “rectangles”,
and this covering is “‘regular” in the sense that the number of rec-
tangles' containing an element (x, y) € P1 X P; depends only on
r(x) and r(y). By the same argument as that used to prove Theo-
rem 4.7, we obtain the following inequality, for any subset G <
P, X P, and any weight function A:

=max{ L N}.
N;, N; Cc€, = yeG
x€G x, 1¥x, C;ee; ye&xe,

Now suppose that G is an antichain of P; X P,. We wish to prove
that the LYM inequality holds for G. For each x = (x, x2) € P X
P,, take

, Ny,
A= N

in the previous inequality. Then

1
=1
x?G Nx

follows if we can show that
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N, N,

——3 g1
yeGnic,xcy) N,

for every pair of chains Ci € Gy, C; € C,. This inequality can be
proved by showing that the elements of smallest rank in G N (C;
X C3) can be shifted up one level, without decreasing the sum on
the left. Hence repeating this operation allows us to concentrate
the elements at a single level, where the inequality is trivial. The
contribution of the elements of smallest rank in G N (Ci X C2)
will consist of *““connected” blocks of the form

1

N, X Py & E NAP:) Ny Pn).

It suffices to show that raising each of these blocks separately does
not decrease the sum, since the blocks do not interact with each
other. Writing

b
Sila, b] = T N{P) Ne-i(P2),

we must prove that

S.[a. b] -
Sk[os °°] B

Sk+l[a- b+ 1]
Si+1[0, o0]

But this can be proved by writing each side as a telescoping prod-
uct and verifying the inequality

Sk[ll, V] < Sk+1{u, v + 1]
Silu, v + 1] Seelu, v + 2] ’

which is a straightforward consequence of the logarithmic con-
cavity of the N/'s. (We omit the details.) This completes the proof.

The final steps in the above argument amount to proving a form
of the LYM inequality for certain “‘weighted’’ sums over rectangles.
More general weighted inequalities of this type have been obtained
in [27], [37], and [46].

e

B N

&
&
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CoroLLARY 4.12: Every finite lattice of multisets (or lattice of
divisors of an integer) has the LYM property.

Thus, of the four classes of lattices mentioned in section 1, the
first three (sets, multisets, and subspaces) have the LYM property.
On the other hand, Spencer [54] has shown that for sufficiently
large n, the lattice of partitions of {1, 2, ..., n} does not have
the LYM property. However, many consequences of the LYM
property remain open (and important) questions.

S. GENERALIZED LYM INEQUALITIES

In this section, we will consider several other problems which
can be solved by variations of the LYM approach. We will use
more general systems of sets instead of maximal chains to derive
upper bounds on the size of “‘antisystems”, using arguments simi-
lar to those described in the last section. If there is suitable sym-
metry, one can always obtain inequalities of the LYM type.

An ordered set-system on {1, 2, ..., n} is a sequence of sets
a= (A4, Ay, ..., A,), where each A is a subset of {1, 2, ..., n}.
Let 8(&) denote the collection of all ordered set systems B which
can be obtained from & by permuting the elements 1, 2, ..., =n.
The arguments in this section are all based on the following gen-
eral result:

THEOREM 5.1: Let & = (A, A2, ..., Ap) be an ordered set
systemon {1,2, ..., n}, with |[Ai] = o, I <i < p. Let Fbea
Jamily of subsets of {1, 2, ..., n} such that F has at most k
members in common with each F € 8(@). Let f; denote the number
of sets in F of size j. Then

The proof is by exactly the same argument as that used to prove
Theorem 4.7.
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If & represents a maximal chain of sets in B, (that is, if # = A,
C A; C .-+ C Au+1) and F is an antichain, then Theorem 5.1
yields the ordinary LYM inequality for families of sets.

By similar reasoning, it is also possible to obtain an analog of
Theorem 4.7, which permits weighting of sets and applies to arbi-
trary subfamilies G < B,.

CoROLLARY 5.2: Let G be any family of subsets of {1, 2, ..., n},
and let \; be an arbitrary weight assigned to sets of size i (1 < i =
nl)’. If & is any ordered set system then (with the notation defined
above)

® Aei &
E ai Hof
= (n) sg?s?%(mgnﬁ)\“')-
[s4}

As a first application of Theorem 5.1, we will give a short proof
of the .following theorem due to Erdés, Ko, and Rado [17]. The
F;;)]of is a slight modification of one originally given by Katona

TreorEM §.3: Let k =< n/2 and let F be a family of k-subsets
of {1,2, ..., n}, no two members of which are disjoint. Then |F|

(k-1

Proof: Let& = (A), Az, ..., A,) be the set system obtained by
arranging the numbers 1, 2, ..., n in a circle and taking the A;'s
to be all consecutive segments of length k. We claim that no se-
quence 8 € 8(&) contains more than k& members of F. By symmetry,
this follows if we can prove that & contains at most X members of
F. But if A; denotes the segment beginning with / (mod »), and
F contains Ay, then F contains at most one set from each of the
pairs {Ai—, Ai} fori = 2, 3, ..., k, and no others. Hence F has
at most & sets in common with «. By Theorem 5.1,
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nfx ="|Flsk

n n
(&) ()
and the result follows.

An even easier argument, similar to the above, can be obtained
in the special case when k divides n. Take & to be any partition of
{1, 2, ..., n} into n/k blocks of size k so that $(&) is the set of all
partitions of this type. Trivially, each partition contains at most
one member of F, and Theorem 5.1 yields the inequality

_Z_._EI_51
(%)

from which the result follows as before.

In their original paper, Erdés, Ko, and Rado derived Theorem
5.3 from a more general hypothesis: the sets in F are assumed to
have size at most k, and the same bound (Z : i )follows. By a
slight change in the above proof, we can obtain this result as a
consequence of an even stronger statement, which is an LYM in-
equality for **Erdss-Ko-Rado families”.

THEOREM 5.4: Let F be an antichain of subsets of {1, 2, ..., n},
each of size at most n/2, such that no two members of F are dis-
joint. If f: denotes the number of sets in F of size i, then

",
E —— = 1.
i l(?li ~ 1)

Proof: Instead of taking & to be the sequence of consecutive k-
segments on a circle, let & be the collection of consecutive segments
of all lengths, in some arbitrary order. In addition, assign a weight
N; = 1/j to sets of size j, and apply Corollary 5.2. Since there are
n segments of length o; for all o7 > 0, the left hand side of the in-
equality in Corollary 5.2 becomes
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AT AT
J J—1
Thus to prove the result, we must prove that the right hand side of

the inequality in Corollary 5.2 is at most 1. Equivalently, we must
show that

1

Ael'gﬁc? |4} s 1.

But this can be proved as follows: suppose that the smallest con-
secutive segment occurring in F N & has length k. Then, as in the
proof of Theorem 5.3, F n « has at most kX members. Since
1/|A| s 1/k for all A € F 0 &, the inequality follows.

The above argument is essentially due to Bollobas {3], but was
discovered independently by Greene, Kleitman, and Katona [25].
Theorem 5.4 suggests that the parameters f; corresponding to an
Erd6s-Ko-Rado family behave like those of a Sperner family on a
set of size n — 1. In [25] the latter authors strengthened Theorem
5.4 by proving that the f's are completely characterized by this
property. (See Theorem 8.12.)

Bollobas [3] used Theorem 5.4, to derive a result about a special
class of antichains:

COROLLARY 5.5: Let F be an antichain of subsets of {1, 2, ...,

n} such that for every A € F, the complement of A is also in F.
Then

1
AE:F u(A4) s 2,

where p(A) = min {( |Z|——11) , (n —nlf:l l_ ])} .

To prove Corollary 5.5, observe that an antichain F satisfies the
given hypothesis if and only if it is obtained by taking the union of
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an Erdés-Ko-Rado family (whose members all have size < n/2)
and the family of its complements. The inequality now follows
from two applications of Theorem 5.4.

Bollobas [3] also observed that Corollary 5.5 can be used to
prove the following result due independently to Kleitman and
Spencer [44] and Schénheim [S3]:

COROLLARY 5.6: Let F be an antichain of subsets of {1, 2, ...,
n} such that forall A, BE F AN B # @and A v B # {1, 2,

«..,n}. Then
|F| = Z—l .
([ﬂ - 1)

To prove Corollary 5.6, let F denote the family of all sets which
are complements of sets in F. The given conditions imply that F
v F is an antichain, so we may apply Corollary 5.5. Since u(4)

< ( [ n= 1 ) for every set A, it follows that
Z]-1

21

_2F g L,

n—1 AFUF p(A)
(141-9)

The inequality in Corollary 5.6 is best possible, since we can
construct an extremal family satisfying the desired conditions by
taking F to be all [n/2]-sets containing a fixed element.

Hsieh [28] proved that an analog of the Erdés-Ko-Rado theorem
holds for subspaces of a finite vector space, except that his proof
works only when k < n/2, leaving the case £ = n/2 unsettled.
We shall show below that Katona's proof can be modified to cover
this case. (In fact, it works whenever k divides n.) Combining
these results, we can state

THEOREM 5.7: Let F be a family of k-dimensional subspaces of
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a vector space of dimension n over GF(q), with k s n/2. If no two

members of F have intersection {0}, then |F| =< [: _ ﬂ .
q

We will give the proof only for the case k| n.

LemMMA 5.8: Let V be an n-dimensional vector space over GF(g),
and let k be an integer which divides n. Then V—{0} can be parti-
tioned into sets of the form K—{0}, where K denotes a k-dimen-
sional subspace of V.

To prove Lemma 5.8 take V to be the finite field of order g~. If
K, is the subfield of order g*, then the cosets of Ko— {0} in the mul-
tiplicative group of V have the desired property.

To prove Theorem 5.7 when &k divides n, we take a fixed parti-
tion of V as guaranteed by Lemma 5.8, and “symmetrize” by
taking all partitions obtainable from the first by linear transforma-
tions. Then the proof of Theorem 5.3 (or more precisely, the re-
mark following it) remains valid and Theorem 5.7 follows immed-
iately.

We have not been able to show that the analog of a “k-fold cov-
ering” exists when k } n, which seems to be more difficult for vec-
tor spaces than it is for sets. (In this case what is needed is a list
of (g" — 1) k-subspaces which meets an intersecting family at
most g* — 1 times.) If such coverings could be constructed
another proof of Hsieh's theorem would follow.

As our second example, we will prove the following theorem due
to Kleitman [36]:

THEOREM 5.9: Let n = 3k + 1, and let G be a family of sub-
sets of {1, 2, ..., n} which contains no two disjoint sets and their
union. Then

s AU,
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Thus a family of maximum size is obtained by taking G to be
the collection of all subsets A with k + 1 s |4| s 2k + 1. The
proof rests on the following lemma:

LemMma 5.10: Let g: denote the number of i-sets which are not in
G, and suppose a + b + ¢ = n. Then

g-ﬂ + g-b + 8 + g-a'l-b

(@ (%)

+ ga+c + gb+c > 2.

(ate) (3o

To prove the Lemma, let & be the ordered set system (4, B, C,
AUB AUC BUC), where A U B U C is a partition of {1,
2, ...,n}and |A| = a, |B} = b, and |C| = c. It follows from
the conditions on G that each sequence B € S(a) contains at least
two sets which are not in G. The lemma follows immediately from
Theorem S.1.

To prove Theorem 5.9, suppose thata s b = canda + b + ¢
= n. By Lemma 5.10,

n
(a)

n
A
go+ n-at —(T)-(gb + £a-p) T+ (n)
b c
For each a < &, choose b = ["—2—_0] —lande=n—a—b
Then if we sum these inequalities for all a < &, and add the single
inequality

@+ =2(]).

1 (8)

Skt nux + =

z_n(g-k-i-l + gn-k-1) = (Z) '
(x5 1)
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it can be shown by a simple calculation that the left hand side is at
most

L& =2 —|G|

.while the right hand side is exactly

n
2 ( ) i
flk+1.2k+11\ L

%t
Hence |G| = L ( ) as desired.
i=k+1\ L

Modifications in the above argument can be made to obtain
analogous results for collections of subspaces. We omit the details.

6. LINEAR PROGRAMMING TECHNIQUES

In the last two sections, we have described techniques for ob-
taining certain kinds of linear inequalities which antichains and
other families must obey. While these inequalities often have im-
mediate consequences (e.g., Sperner’s Theorem, the Erdos-Ko-
Rado Theorem), it is sometimes possible to obtain deeper results
by using the techniques of linear programming. In this section, we
will explore several examples which illustrate this approach.

We begin by proving two closely related theorems, the first due

to Kleitman [60], and the second due to Kleitman and Milner
[S9].

THEOREM 6.1: Let F be an antichain in B,. with |F| = ( Z) i’

s n/2. If F* denotes the order ideal generated by F (i.e., the
JSamily of sets contained in some member of F), then

@) 17+ = £ (),

i<k

(Kleitman [60])

1
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(ii) T A}GJF |A| = k. (Kleitman, Milner [

i " i * and the
In other words, if |F| = ( k) , then both the size of F¥* an

average size of the members of F are at least as big as they would
if F were concentrated at level k. . .

be’Il‘he method of proof actually applies to any partially orde.n;ld

set P with the LYM property whose Whitney numbet:s are logarlf -

mically concave. We shall state and prove the result in this form:

. . M
OREM 6.2: Let P be a partially ordered set wzth. the LY
pr;JI;jty, such that (N(P)P = Ni-((P)N;+1(P) for each £ ;.et k fb(;
any integer such that k = m, where m denotes _tke.m ex 1 fo
which N{P) is maximum. Let F S P be an antichain satzsﬁn;}g
|F| = Ne(P). and let F* denote the order ideal generated by F.

Then

(i) |F*| = .'EkN'(P) ’

1 >
(ii) L@ =k

. Proof: For each i, let x; = fi/N;, where fi denotes the number of
elements in F having rank i. Since P has the LYM property, we

have
Ix; = 1.
The assumption | F| = N; gives a second linear constraint:
LxiN: = Ny
Since P has the LYM property, we can assume that x; = 0 for

i > m, since otherwise the top levels of F can be lowered without
reducing | F| (using normalized matching).
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To prove (i), we will relate the problem of minimizing |F*| to
the problem (not equivalent, but sufficient for present purposes)
of minimizing a certain linear function. To this end, let f* denote
the number of elements in F* of rank i, for each j, and let x* =
f#/N;. Observe that for each i we can construct an antichain in P
by taking all elements in F of rank { = j, together with all elements
of rank j which are not in F*. Hence, by the LYM inequality,

{=-—x*+ZTxsl
izj
which implies
L xi = x*
iy

for each j. Since |F*| = I x;* N;, it follows that

|[F¥| = EN; E x; =Zx {L Nj.
y =y i jsi

Now consider the linear program

on,-N,- 2Ny x20;

minimize: L x; N.
where N; = I N, The dual program is:
<t

—a+8N:=sN, i=0,1,2,...,n,
a,B=0

maximize: — o + 8 Ni.

In order to prove (i), it is sufficient to find values of o and 8, satis-
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fying the conditions of the dual program, such that — o + 8 N
= Ni. By duality, N; must then be a lower bound for the original
problem. To find such values, we set — a + 8 Ny = N; and elimi-
nate «, which leads to the conditions

BNz N, B(N; — Np) = N; — Ny,

fori = 0, 1, ..., n. This is equivalent to the conditions
N-N N — N
N—N=PN=N

for all / and j such that — 1 < j < k < 7 < m. Using the logarith-
mic concavity of the N;'s, one can easily show that

M_A_’j< Ni < Ni+1 < N — Nx
Ne— N7 Ny — Ni— Newi — Ne = N.— N

which proves that suitable values for o and 8 exist. This completes
the proof of part (i).*

To prove part (ii), we can assume that |F| = Ni (throwing away
the highest elements if necessary). Then the average rank of mem-
bers of F is bounded from below by the solution to the linear pro-
gram

Z—xiz —1,
i=0

I Nixi= Ny, xi20;

- /) '/
minimize: L ——— Xu
=0 N

*This argument was communicated to the authors by A, Odlyzko.
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The dual program is

—a+ BN = —'gf-,i=0,l,...,m,

a, 3, = 0;
maximize: — a + 8 Nj.

As befqre, we seek to find values of & and B satisfying the dual
constraints, such that — « + § N = k. Solving and eliminating
a leads to the conditions

BNe= k. BN — Ny = 40—,
k

!})ri =0, 1, ..., m. These conditions can be satisfied if and only
i

kN — jN; _ iN: — kN
Ne =N, - Ni— N

for all j, & such thatj < k& < i s m, which in turn can be written
as

1 _G=k) 1, (k=) _1

N T G-) N, (i—) Ni

forj < k < ‘i < m. The proof of part (ii} can now be completed by
the application of the following easy lemma, whose proof we omit:

'LEMMA 6.3: If a0, 11, @3, ..., is any sequence which is logarith-
mically concave, then the sequence ag™', o', ay7", .. ., IS convex
(in the usual sense).

As our Jast example, we will prove the following theorem due to
Kleitman [41]; '
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THEOREM 6.4: Let F be a family of sets in B, which contains no
three distinct members A, B, C, with A U B = C. Then

|F| = ([;D(l + =),

Proof: Let fi denote the number of elements in F of rank k. Fix
an integer j = n/2 and consider the collection € of maximal
chains between rank j and rank 2j. Let § be a member of F of
rank k = j. We claim the following: among all of the chains in Cy
passing through §, at least a proportion j/k contain no smaller
member of F. This follows immediately from the Erdds-Ko-Rado
Theorem (viewed upside down): if we add all of the rank j elements
below S which are dominated by members of F, the proportion of
chains which meet smaller members of F can only increase. But
these sets form a (dual) Erdés-Ko-Rado family of j-subsets of S,

whose size must be bounded by ( X ’f_;_l 1). Hence the propor-

tion of ‘chains through S which meet smaller members of F' must

be at least
(k i;_j 1)/(Jk) = ﬁk-_j

as desired. ¥ we count, for each § € F, the number of chains
through § which contain no smaller elements of F, the result is
clearly bounded by the total number of chains in €. This implies

]
()

foreachj=1,2, ..., [n/2].
Next consider the linear program whose object is to maximize
the linear function

=1
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subject to these constraints, together with the conditions fx = 0, k
=0,1, ..., n. The dual program is to maximize

[»/2]
z Qg
k=1

subject to the constraints
min{j,l Zl]} k oy

()
J

i=1,2, ...,n,witha.ao,k=1,2,...,[;’].

> 1,

)y

The values
Qb = (Zk ¥ 1) B (2'11) + ﬁ(ztﬁ) + o

% = (2’;) - (2k 2 1) +7}c_(22) ’

satisfy the dual constraints and yield as objective function

(12)+:25+0((12)

which implies that the latter is an upper bound for the solution to
the original problem. This bound is asymptotic to the one stated in
Theorem 6.4.

We note that this bound is only asymptotic and may not be best
possible. One can construct examples which satisfy the conditions

of the theorem and attain the value / 7 1y in the fol-
(=] (1+5)

b S ARERRAE S 1 g
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lowing way: let n = 2« —1, and consider the Hamming code H, of
order «. We can think of H, as a family of n-sets with the property
that every pair of sets differ in at Jeast three places. Moreover each
of the cosets of H, can also be thought of as a family with this
property. Since |H,| = 2" —«—1 ~ 27/n, at least one of the cosets

must contain a proportion 1/n of the [ %]-sets. If we take these

[ -'zi]-sets, together with all of the[ %] +1-sets, we obtain a family

of size at least n with the desired properties.
) (1+1) prop
[ 7] n

7. INTERSECTIONS OF ORDER IDEALS

If P is any partially ordered set, an order ideal of P is a subset
K < P such that wheneverx € K andy < x, theny ¢ K. If P =
B,, an order ideal is sometimes called a simplicial complex. This
section is based on the following elementary but useful fact:

TueoreM 7.1: (Kleitman [38]) Suppose that F and G are order
ideals in B,. Then

|FI .16l _ IFN G|
I Zn = 2:! *

In other words, the proportion of sets in F N G is at least as *

large as the product of the proportions of sets in ¥ and G.!

We can turn one of the order ideals upside down by taking com-
plements and derive the following from Theorem 7.1 as an immed-
iate corollary:

TOr in probabilistic language, if 4 is a set chosen at random from By, then
Prob {A € F} < Prob {A € F|A ¢ G}.

o
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CoOROLLARY 7.2: Suppose that F is an order ideal in B,, and G
is an order ideal in the dual of B,. Then

[F|_, 1Gl _ IFNG|
2 2 R

» Before proving theorem 7.1, we mention a typical application:

Suppose that F < B, is a family of sets with the property that
no two members are disjoint (no restriction on rank or compara-
bility is assumed). It is trivial to see that F has at most 2"~! mem-
bers, since no set can occur together with its complement. The
same bound holds for families G S B, with the property that no
two sets cover all of the points. Daykin and Lovasz [11] proved
that a family which satisfies both of these conditions can have at
most 2"~2 members:

TueoreM 7.3: Let H be a family of subsets of {1, 2, ..., n}
with the property that forall AABE H ANB % Pand A U B #
{1,2, ...,n}. Then |H| s 2°~2.

The upper bound is achieved by taking all subsets which miss
one point and contain another.

We can derive Theorem 7.3 from Corollary 7.2 as follows: Let H
satisfy the given conditions, and define F to be the order ideal
generated by H, and G to be the dual order ideal generated by H.
Then no two members of G are disjoint, and no two members of F
have union equal to {1, 2, ..., n}. Hence by Corollary 7.2,

|H| = |F N G|s‘£|.§'u_@

< 211'-2.

The statement of Theorem 7.1 is also valid for divisors of any
integer, and we shall give a proof of the result in this form:

THEOREM 7.4: Let N = '1_'{) p#i be a positive integer, whose prime
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decomposition is as shown. Let 6 = Il__:Io (1 + e) denote the total

number of divisors of N. If F and G are order ideals of divisors of
N, then

IF| 16l _ IFNGl
8 b o

The proof is by induction on m, the number of distinct prime
divisors of N. Fix a prime po, and let F; denote the §ubset of F con-
sisting of those members in which po occurs to the ith power 0 =<

< ep). Define G; and (F N G); similarly. Let 6’ = 1I=I| (1 + &) de-

note the total number of divisors of N/pe%. If 0 < i s j seo 1? is
not difficult to show that |F} |Gi| s 8" - |(F N G)] (by removing
all occurrences of po and applying the inductive hypothesis). Th.e
result now follows immediately from the following lemma (we omit

the details):

LEMMA 7.5;: Let (xo. X1, .. .» Xg), G0, 1. ..., yo) and (20, 21, - -,
z,) be sequences of nonnegative real numbers, such that for every

i’j < g, XY < Zminfi.j) Then
(Ex) (Zy) = (g + 1) (Ez).

Lemma 7.5 in turn can be derived from the following ?lementary
fact, which is sometimes known as Chebyschev’s inequality:

LEMMA 7.6: Letap < oy < -+ < agand Bo s B = -+ =< B, be
sequences of nonnegative real numbers. Then

(Za) (EB) = (g + 1) (i)

Surprisingly, the analog of Theorem 7.4 fails to hold for sul:f-
spaces of a finite vector space. Consider a vector space \'4 ?f di-
mension 4 over GF(g). Let F consist of all subspace§ of d.xmen-
sion 0 and 1, together with half of the subspaces of dimension 2.
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Let G consist of all subspaces of dimension 0 and 1, plus the other
half of the 2-spaces. If & denotes the total number of subspaces,

then '

On the other hand, |F N Gl=1+ (¢* — /(g — 1), while d =
200+ (g — Vg~ 1+ (@2 + 1 (g* + g + 1). Hence

IFN G| _
— 0
as g — o0, which shows that the inequality in Theorem 7.4 cannot
be valid.
.uj We conclude this section by giving another application of Corol-
f lary 7.2.
TueoreM 7.7: (Kleitman [38). If Fr, Fay «--s F are disjoint

collections of subsets of {1, 2, .-« n} such that A N B # @ for
allA,BeF,i=1,2, ..., k, then

k
19]}7" < 2" - 2n-k.

The bound is achieved by taking F, to be the collection of all
sets which contain 1, F2 to be sets which contain 2 but not 1, F to
be the sets which contain 3 but not 2 or 1, and so forth.

The proof of Theorem 7.7 is by induction on k. For k =1, the
result is trivial. Moreover, it is not hard to see that if Fi is a max-
imal family satisfying 4 N B # @ for all A, B € F, then |F}| =
=1 If k > 1, let U denote the union of the families Fi, F2. ...,
Fi-:. Assuming that the union of all F's is as large as possible it
follows that U must be a dual order ideal. By the inductive hypo-
thesis, |U] = 28 — on—k+1, Extend Fx to a maximal family Fi'
(satisfying the above condition with k = 1), and let L denote the

X
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. collection of sets which are not in Fi'. Then L is an order ideal,
and |L]| = 2*~'. We have

k
|UF|=|UUFR|s \UNL|+|E

s J_l{|2_"|ﬂ + |F'| (by Corollary 7.2)

< 20— Uk,

8. CANONICAL FORMS

One of the most versatile theorems of extremal set theory was
proved by Kruskal [45] and later independently by Katona [34]
(although related results were obtained much earlier by Macaulay
[49]). The Kruskal-Katona theorem answers the following question:

If F is a family of k-sets, let OF denote the family of (k — 1)-sets
which are subsets of members of F. How small can |OF | be, given
|F|?

A crude lower bound on [9F]| can be obtained from the trivial
Lemma 4.5 proved earlier (which is essentially the normalized
matching property for sets):

|F}.

k
0F| = 5%+ 1

Kruskal and Katona obtained a much more precise statement,
which gives a best possible lower bound on |3F|:

TueoreM 8.1: Let F be a family of k-sets. If

() 7= (%) + () + -+ (5)

ax > Gx-1 > e zi> 0,
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then

|8F| = (k“_fl)+(k“*_-*2)+ +(z—‘zi1)°

It is well known that every positive integer can be expressed
uniquely in the form (**), This representation is known as the
k-binomial expansion of an integer, and its existence can be
proved easily from elementary properties of binomial coefficients
(see [45]). To find such a representation of | F|, choose ax to be as
2‘) = |F|. Then subtract and repeat with
k — 1,k — 2, and so forth.

We will defer a proof of Theorem 8.1 until the end of this sec-
tion. )

If the numbers associated with the Kruskal-Katona Theorem
seem mysterious at first glance the following observation should
help to explain their significance. Consider the set i of all infinite
sequences (xo, xi, ....) of zeros and ones, with exactly k£ ones in
each sequence. We introduce a linear ordering on Sk by ordering
sequences with respect to the last position in which they differ
(reverse lexicographic ordering). Denote the elements of Si by oo,
Oly 02y ceo

large as possible with (

LemMma 8.2: Let 6, = (xo, X1, ...,) denote the m-th member of
Sk and suppose that 0, has ones in positions with indices a, < a
< +++ < ai. Then

m= (0 () + e+ (D)

(where by convention a term is zero if its numerator is less than its
denominator).

For example, (0,0,1,0,1, 1,0, ...,) is the 18th member of 53,

since ( 35) + (;) + G) = 18. In general, the k-binomial expan-
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sion of a number provides a direct way of writing down the m™

sequence in Si. . o
k-sequences in Si can be associated with k-sets of positive inte-

gers in the obvious way, and we will regard these t.wo notions as
freely interchangeable. In the lexicographic ordering of S the
initial segment of length m forms a “cascade” of sets (Kruskal
[45]) which can be described as follows. If

_ {4 ax—1 . a
m_(k)+(k—1)+ +(1)'
then the first m sets in Sk consist of:
all k-sets in [0, ax — 1],

all k-sets formed by adding a to a (k — 1)-set in [0, @x—1 — 1],

all k-sets formed by adding {as as-1} to a (k — 2)-set in
[0,ax-2 - 1],

and so forth. . ) ‘
The next lemma explains the operation of “lowering denom-

inators” in a k-binomial expansion.

LemMa 8.3: Let F = {0, 01, ..., On-1} be the initial segment
of length m in S, and let 3F denote the collection of (k — 1)-sets
which are subsets of members of F. If

== () () 4 ().
then

oF| = (, 2 )+ (12 + +(; 24)-
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The proof is an immediate consequence of Lemma 8.2. We can
thus restate the Kruskal-Katona Theorem as follows:

For F € S |F| = m, the cardinality of OF is minimized by
taking F to be the first m sets in S, in lexicographic order.

Another useful reformulation of Theorem 8.1 is based on nota-
tion introduced by Clements and Lindstrom [7]: given a family F
of k-sets, define the compression of F (denoted CF) to be the
family consisting of the first | F| sets in Si. We say that a family
of F is compressed if CF = F.

It is trivial to verify that if F is compressed then oF is also
compressed. Using Lemma 8.3, we can interpret the Kruskal-Ka-
tona Theorem as a statement about how the operators d and C
commute: for any family F of k-sets,

dCF < CoF.

Equivalently, if F € Sx and G € Sk and oF € G, then dCF <
CG.

If F is a family of sets of varying size, we can interpret the
operators C and d as acting on each rank of F separately. A family
K is called a simplicial complex (or order ideal of sets) if K < K.
By the above remarks, the following is also equivalent to Theorem
8.1:

TaEOREM 8.4: If K is a finite simplicial complex then so is its
compression CK.

Hence we can regard CK as a canonical form for simplicial
complexes having a specified number of faces of each size.

If K is any simplicial complex, we define the f-sequence of K
to be the sequence AK) = (fo, fi, f2» --.,) Where f; denotes the
number of i-sets (or ({ — 1)-faces) in K. Theorem 8.1 permits a
complete characterization of those sequences of integers which
arise as f-sequences. It is convenient to introduce the following
notation: if

-,

"o A RET Ar sty

apm 5T es
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mm (B () (),

QG > aQ-1> >4 =2i>0,

define
Oul(m) = (k z 1) t (kak—-lz) toee +(i—a‘.1)'

THEOREM 8.5: A sequence of integersf = (fo, fi, fo, -..) is the
f-sequence of some finite simplicial complex if and only if for each
k=1,0:(fi) = fr-.

The proof is immediate: to construct a complex K with iK) =
(fo, i, f25 .. .) take the first f; sets of size 7 for each i. By Lemma
8.3, these sets form a simplicial complex.

By similar reasoning, it is"possible to obtain canonical forms for
antichains having a fixed number of sets of each size. If F is an
antichain in B,, let f; again denote the number of i-sets in F, and
define AF) = (fo. fi, for -..). The following theorem is due to
Clements [6] and independently to Daykin, Godfrey, and Hilton
[12]:

THEOREM 8.6: Letf = (fo, /i, fos - - ., f) be a sequence of non-
negative integers, and let k and | be the smallest and largest in-
dices i for which f; # 0. Then f = f{F) for some antichain F € B,
if and only if

(Fx¥) S + ake1 (firr + B2 (firza + - -
+ 0 i + AN s ()

Theorem 8.6 essentially states that f = f-zF) for some antichain
F < B, if and only if it is possible to construct F in the following
canonical way: take the first f; I-sets in lexicographic order; then
take the next fi—; (! — 1)-sets which are available (i.e., which are
not subsets of sets already chosen); then the next fi-2 (I — 2)-sets,
and so forth.




66 Curtis Greene and Daniel J. Kleitman

To prove Theorem 8.6, observe that for any antichain F, §it3)
must satisfy (***) since the left hand side represents the smallest
possible number of k-sets which are contained in members of F. Con-
versely, if f satisfies (¥**), it is easy to see that the canonical con-
struction described above can always be carried out.

By analogy with simplicial complexes, we define the compression
CF of an antichain F to be the canonical antichain whose f-se-
quence is fF).

Every antichain F determines a unique simplicial complex (de-
noted by X(F)) whose maximal elements are the members of F.
(K(F) is sometimes called the order ideal generated by F.} It fol-
lows immediately from the definitions that F is compressed (as an
antichain) if and only if K(F) is compressed (as a simplicial com-
plex). Equivalently, F is compressed if and only if F = K — 3K
for some compressed simplicial complex K.

We can restate these observations in the form of a slight gen-
eralization of the Kruskal-Katona Theorem:

CoRroLLARY 8.7: Let F be an antichain of sets in B,, withf(F) =
(fo, fi, f2s ...). Let k be the smallest index for which Se #0, and
let I s k. Then F dominates the smallest possible number of I-sets
(among all antichains in B, with the same f-sequence) if Fis com-
pressed.

The inequality (*#*) in Theorem 8.6 can be viewed as a refine-
ment of the fundamental LYM inequality (Section 4), if we divide

both sides by ( Z) For example, if F consists only of sets of size k&

and k + 1, then (#**) becomes
Ji + O+1 (fi+1) <1
n n
& )

This is stronger than the LYM inequality since

+r (firr) . Sfits

® i)
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as can be seen from Lemma 4.5 (the normalized matching prop-

erty for sets).
Daykin [9] observed that the Kruskal-Katona Theorem can be

used to give a short proof of the Erdds-Ko-Rado Theorem.. We will
discuss this argument next, as well as a number of extensions and
refinements. In fact, we will prove a more general result, due to
Kleitman [42], from which the Erdds-Ko-Rado Theorem follows

immediately.

THEOREM 8.8: Let F be a family of k-subsets of {1, 2, ..., n},
and let G be a family of l-subsets. Suppose thatk + I < n, and
that no member of F is disjoint from a member of G. If |F| =

-1 n—1
(f = y)then Gl = (721)

To prove Theorem 8.8, let F denote the family of (n — k)-sets
which are complements of members of F. Then |F| = |F |,. and
the conditions on F and G imply that no member of F contains a
member of G—that is, F U G is an antichain. By Theorem 8.6,

|G| + 041 (Fr+2 (+ + + On—s (F) )= (;’) ,

which implies |G| = (';) - (n I_ 1) = ( ?__11), since |F| =
(v 28
We have actually proved more:

CoROLLARY 8.9: If F and G are as in the statement of Theorem
8.8, except that | F| is arbitrary, then

1G] = (7) = 81 @uea - ok (LFD)--).

As a consequence of the proof of Theorem 8.8 we obtain the fol-




68 Curtis Greene and Daniel J. Kleitman

lowing corollary: If F is any collection of k-sets in B, let C¥F de-
note the reverse compression of F in B,. That is, C*F consists of
the last | F| sets in the lexicographic ordering of k-subsets of {1, 2,

.., n}. (Equivalently, C*F = CF, where a bar denotes taking all
sets which are complements of sets in the given family.)

CoRroLLARY 8.10: If F and G are families of k-sets and l-sets
which satisfy the conditions of Theorem 8.8, then C*F and C*G
also satisfy these conditions.

Thus the pairs C*F, C*G of families which are “reverse-com-
pressed” form a set of canonical forms for pairs of families satis-
fying the conditions of Theorem 8.8. Not every pair of families
which are reverse-compressed has the “pairwise nondisjointness
property,” however. For this is to be true, it is necessary that the
inequality in Corollary 8.9 hold.

When k = [ and F = G, Theorem 8.8 reduces to the Erdds-Ko-
Rado Theorem, and Corollary 8.10 can be restated as follows:

COROLLARY 8.11: Let F be a family of k-sets in B., k = n/2,
which satisfies the conditions of the Erdiés-Ko-Rado Theorem.
Then C*F also satisfies these conditions. In fact, this is true be-
cause every member of C*F contains the element n.

Using the above arguments, it is possible to obtain considerable
refinements of the Erdés-Ko-Rado Theorem for arbitrary antichains
(i.e., when the condition of uniform size is removed). In fact, the
next theorem completely characterizes the */f-sequences” of anti-
chains with the Erdds-Ko-Rado property, improving an earlier
partial result of the “LYM" type (Theorem 5.4).

TueoreM 8.12: Let £ = (fo, f1s f2, .- -) with fo = O and f; # 0
only if i = n/2. Then there exists an antichain F < B, whose
members are pairwise nondisjoint, with f(i fiF) = f. if and only 1f
there exists an antichain F' © B,— wtthf(F Y=L o)

In other words, the fi's corresponding to Erdds-Ko-Rado families
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on a set of size n behave exactly like those of Sperner families on
a set of size n — 1. Necessary and sufficient conditions for se-
quences of the latter type are provided by Corollary 8.6.

To prove Theorem 8.12, we argue as follows: suppose that F S
B, is an antichain which satisfies the given conditions. Let C*F =
CF. Intuitively, C*F is obtained by ‘‘reverse-compressing” each
rank of F, beginning with the smallest ranks first. Clearly C*F is
an antichain with f{F) = f(C*F). The proof will be complete if we
can show that each member of C#F contains the element », for
then the required ¥’ < B,-; can be obtained from C*F by re-
moving n from each set. Let / denote the largest index for which
fi # 0, and let [F]' denote the result of “projecting F up to rank
I”, i.e., [FI' consists of all I-sets which contain members of F.
Similarly, define [C*F]' to be the projection of C*F up to rank /.
Clearly [F]' is an Erdés-Ko-Rado family, since F itself is. Moreover,
by Corollary 8.11 the reverse compression of [F] has the property
that each member contains n. But it is immediate from the defi-
nition of C*F that [C*FY is reverse-compressed. Moreover |[F}| =
|[C*FY| by Corollary 8.8 (applied upside down), and hence each
member of [C*F]' contains n. It follows easily that each member
of C*F contains #, and the proof is complete.

Reverse-compressed antichains, all of whose members con-
tain the element n, can be thought of as canonical forms for
Erdos-Ko-Rado families having a specified f-sequence.

Next we consider extensions of the Kruskal-Katona Theorem
to lattices of multisets My, when & = (eo, &1, ...), & € Z+ U {0},
We extend the notation introduced earlier: if F S M, let 8F denote
the family of multisets of the form (o, 01, ..., i — 1, ...), where
¢ = (0, 1, ..., Gi, ...) is 2 member of F. Let S denote the set
of elements of rank &k in M. Again order the elements of Si in re-
verse lexicographic order (i.e., by the rightmost position in which
they differ), and define the compression of a set F & Si (denoted
CF) to be the initial segment of length |F| in Si.

Clements and Lindstrom [7] proved that for any family F < S,
the identity

dCF c CoF

holds, provided that eo = e) = e; = .- . This identity leads to an




70 Curtis Greene and Daniel J. Kleitman

analog of the Kruskal-Katona Theorem for lattices of multisets,
which we restate as follows:

THEOREM 8.13: Let F denote a family of multisets of rank k in
M where &€ = (eo, €1, ...) and eo = ey = € = ++ . If Fis
Jfixed, then |OF| is minimized by taking F to be compressed.

Theorem 8.13 can be used to characterize the f-vectors of gen-
eralized “simplicial complexes™ in lattices of the form M The
characterization is analogous to that already obtained for sets
(Theorem 8.5). The case & = (o, ®, o, ...) of Theorem 8.13 is
due to'Macaulay [49].* (Another proof was given by Sperner [S6].)

The lower bound on |3F| can also be expressed in numerical
form, using the notation introduced in section 1: one can show that
| F| has a unique decomposition

— (e, ..., €0, ..y Cap_, 20y« ny €y
7= () () (),

(f > 0) where each term is nonzero, and ax = ax—1 = -+- = a, with
no integer j repeated more than e times. The conclusion of Theorem
8.13 is that

- eo,...,eak eo,---,eqk_.| . eo,...,eq,-
|0F|_(k_l)+( E—2 )+ +< i1 )

Ife=(1,1,1, ...), then ax > ax—y > --+ > a;, and these ex-
pressions reduce to the standard binomial decompositions. If & =
(o0, 0, o, ...), there is no restriction on the a’s, and we get a
“negative binomial decomposition”:

* Macaulay’s object in studying this question was to obtain a characterization of
Hilbert functions of cettain kinds of modules. He considered R-modules of the
form R/I, where polynomial ring in finitely many variables over a field, an 7 is a
homogeneous ideal in R. A function H:Z* — Z% is the Hilbert function of such a
module if and only if there exists a generalized simplicial complex F & Mz, where
&= (w, o, ®, ...} such that f{F) = (H(0), H(1), H(2), ...).
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(M)l /()

ak+k—1 ‘ak_|+k—2) . (a;-i—i—l)
C(o ) (e Y (e,

withar = ae—1 = ++- = a; > 0.

Many of the results mentioned earlier for lattices of sets can be
extended to lattices of multisets using Theorem 8.13. We mention
one example, which extends the Erdds-Ko-Rado Theorem in a
direction which is not obvious at first glance. Before stating the
general result, we begin with a special case, which is most con-
veniently stated in integer-divisor form. Recall that the “rank” of
an integer is the total number of prime factors which appear in it.

|F| =

Tueorem 8.14: Let N = 1_1' pici, where ep = €1 = -+ = em and

e. is odd. Let F be an antichain of divisors of N, each having rank
k (with k = Te/2). Suppose that for all a. b, € F, ab does not

divide N. Then
€0, €1, oy y — A
|F|s(° lk—oz )
where a = [en/2] + 1.

Theorem 8.14 states that | F| is maximized by taking all rank &
divisors of n which have p% as a factor, provided that e, is odd. If
n is square free (i.e., o = €1 = +++ = en = 1) this result is gquiv-
alent to the Erdos-Ko-Rado Theorem since ab | n if and only if the
sets of primes occurring in @ and b are disjoint.

If e, is even, the statement must be modified as follows:

THEOREM 8.15: Let N and F be as in Theorem 8.14, except that
e is arbitrary. Let Gy denote the set of divisors of N of the form
PO pift -« pulm, where f; > &/2 for some index i and f; = ¢;/2 for
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all j > i. Let Fy denote the elements of Go which have rank k.
Then |F| < | Fol-

It is easy to verify that ab } N for all a, b € Go, and hence Fy is
a family of the desired type. If e is odd, then Gy consists of all
a|N such that p*|a, and Theorem 8.14 follows as a special case.

To prove Theorem 8.15, let F be the set of all divisors of N of
the form N/a, a € F, and define F; similarly. Let ¥ and Fo* denote
the “‘descendants” of F and Fy at level k. Clearly both £ U F and
Fo U F, are antichains. Moreover it is trivial to check that Fo* =
Si — Fo. Note that F; is an “‘initial segment” in the reverse lexico-
graphic ordering of Stq—+, and hence so is Fo*. Hence by Theorem
8.13, if |[F| > |Fo|, then |F*| = |Fo*| = |Sx — Fol| > |« — F|,
which is impossible since ¥ € S — F.

In the statement of theorem 8.15, it is not necessary to assume
that all of the members of F have rank k. The same result holds
if F is any antichain whose members all have rank = k.

If we remove the conditions that F be an antichain from the hy-
potheses of Theorem 8.15, and also the restriction on ranks, we
obtain the following:

TuroreM 8.16: Let N = ‘I=Io pFi, withep = er= -+ = em. Let G

be an arbitrary set of divisors of N, such that ab XNforalla b€
G. Then |G| = |Gy, where Go is as defined in Theorem 8.15. -

The proof is immediate: for each a € Go, at most one of {a,
N/a} can be in G, and every divisor is either a or N/a for some a

€ Gp. Trivially,

% M, if N is not a square,
1Go| =

% (|Ms| — 1), if Nisasquare.

It is interesting to consider what happens when, in the lattice
of divisors of an integer, the condition ab t N is replaced by the
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more natural condition (¢, b) = 1. Erdoés and Schénheim [18]
obtained an analog of Theorem 8.16 for this case, but the analog
of Theorem 8.15 seems more difficult, and little is known about it.

We conclude this section with a brief proof of Kruskal’s theorem
which is due to Clements and Lindstrom [7]. Their proof is
actually more general, and applies to multisets as well (Theorem
8.13). We will give only the set-theoretic version, which is some-
what simpler:

Proof of Theorem 8.1: Qur object is to prove that if F € S, G
€ Sk-1, and OF € G, then 9CF & CG. Let n denote the largest
index for which n is a member of some set in F or G. For each
index, i, 0 =< { < n, define a new operator C; (called i-compression)
as follows: write Sy () = {A €Sk |i € A} and Sx()) = {A € Sy | i ¢
A}. Then both Si(i) and 5;(7) inherit a linear ordering from the
lexicographic ordering defined on Si. For any family F of k-sets,
define the i-compression of ¥ (denoted C;F) to be the union of the
first [F N Si(i)| members of Si(#) and the first |F N $i{#)| mem-
bers of $i(7). Clearly |CF| = |F|.

The proof of Theorem 8.1 is by induction on n, and is based on
four elementary observations.

() IfF € S, G € Si-1, and dF € G, then 3C:F < CG, for
all i = n. (The i-compression of a simplicial complex is again a
simplicial complex.)

(2) After repeated application of C; for various i, ¥ and G are
transformed into sets F' and G’ (with |F| = |F'| and |G| =
|G’ |) which are i-compressed for all i < n.

(3) If 2k # n + 1, then F' is compressed (that is, F' = CF)
and the proof is complete.

(4) In the special case when 2k = »n + 1, it is possible for F’
to be i-compressed for all i but not compressed. However, F' can
be made compressed by exchanging its /ast member for its immed-
iate predecessor, an operation which preserves the relation 8F' <
G'. Hence the theorem is true in every case.

Statement (1) follows from the inductive hypothesis. The argu-
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ment is straightforward. Statement (2) is trivial. To see that )
holds, let x be the last member of F' (in ordering of §;), and let y |
be any element of S which precedes x. If y ¢ F’, then x and y

cannot agree in position 7 for any / <n, since F' is i-compressed.
Hence x and y must be complements, which impliesn + 1 = 2k.
In this case, it is easy to see that F' — x + y is compressed and
satisfies (F' — x + y) S G', which proves statement (4), and
completes the proof of Theorem 8.1.

Appatently nothing is known about analogs of the Kruskal-
Katona Theorem for subspaces of a finite vector space. On the
other hand several consequences of it are known to be valid
(Hsieh’s Theorem, the LYM inequality) so there is reason to hope
that such a result might exist.

9. APPLICATION: THE LITTLEWOOD-OFFORD PROBLEM

We conclude by showing how some of the ideas, methods, and
results presented earlier can be applied to a geometric problem
concerning distributions of linear combinations of vectors. The
question was first raised by Littlewood and Offord [47]:

Let %1, ¥, ..., v be vectors in a Hilbert space V, each of mag-
nitude at least one. What is the maximum number of linear com-
binations of the form

L evile=0o0r1)

which can lie in a sphere of diameter 1?

2
this number can be achieved by taking all of the vectors to be the
same. The solution to the Littlewood-Offord problem was con-
Jectured by Erdos [15] and proved in several stages by Erdss, Ka-
tona, and Kleitman. Since the earlier arguments are elegant and

The answer is ( ”: ) , independently of the dimension of V, and

PROOF TECENIQUES IN THE THEORY OF FINITE SETS 75

elementary, we have included them below, together with the final
dimension-free proof due to Kleitman.

Proof (when dim V = 1, (Erdds [15})): We can assume that alll
of the vectors are positive, since changlr'xg the sign of a vecto?on y
translates the set of linear combinations. I‘{ow to_each melar
combination associate the set of indicsas f.or Whl(fh &= 1. Clearly,
if a collection of linear combinations !les ina unit interval, the cot'-
responding sets must form an anttcha}m. 'Hence, by Sperner’s
Theorem, the number of linear combinations can be at most

(13)

Proof (when dim V = 2, (Katona [31}, Kleitman [35])): As above,
we can change the direction of vectors if necessary and assume that
the vectors all lie in two quadrants (say the first anq setiond). Now we
associate two sets of indices to each linear combination—one cor-
responding to vectors in the first quadra.nt and the other correspond-
ing to vectors in the second quadrant. Since the sum f’f t'wo unit vec-
tors in a quadrant has magnitude at least V2 fmd .hes in the same
quadrant, we can deduce that two linear corpblfiatlons jlymg w1th!n
a unit diameter circle cannot have sets of indices which agree in
one quadrant and are comparable in thcj. other. The condxtlons4o;1
the pairs of index sets are therefore precisely those of Theorem 4.5,

% follows as before.

n
3)

Proof (when dim V is arbitrary, (Kleitman [391)): 'The idea qf
this proof is to construct “saturated partitions™ for linear combi-

nations of vectors, imitating the methods ?f section 3. We will
show that the collection of ail linear combinations can be partitioned

into ( n ) blocks, such that no two linear combinations in a block
n

from which the bound of <

2

can lie in the same unit diameter sphere. Trivially, this implies a

bound of ([ g ]) .
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The construction is analogous to the inductive procedure of de-
Bruijn, Tengbergen, and Kruyswijk, in which a k-chain in B.—
produces two new chains in B,, one of length ¥ + 1 and the other
of length & + 1. We proceed in exactly the same way: suppose
that the linear combinations of Vi %, ..., %—1 have been appro-
priately pattitioned into blocks. Consider one such block U of size
k, whose members we denote by ¥1, 12, ..., ¥:. We can obtain two
new blocks from U by taking all linear combinations with and
without #,, denoting these blocks by U -+ #, and U, respectively.
Next take that linear combination ¥; € U which has maximal com-
ponent in the direction of 7, and transfer ¥; + ¥ from U + #, to
U. This gives new blocks of size kx — 1 and & + 1, and one can
easily check that no two members of either block lie in a sphere
of diameter one. Repeating this construction for each block gives
a partition of all linear combinations of 73, %3, ..., ¥,. Since the
number of blocks of each size propagates in the same way as the

number of chains in a partition of B,, there must be ( ﬁ ) blocks

2
altogether, and the proof is complete.

Final remark: Because of the large number of papers in the
literature on this subject, and because some of the results described
here have been rediscovered several times, there may have been
cases where our attribution of results has been incomplete. We
apologize in advance for any such occurrences, and hope that the
authors involved will inform us of any errors in the references.
Also, requirements of space have forced us to leave unmentioned
many interesting results which are closely related to the ones we
have chosen to include. Again we offer apologies but suggest
that the only remedy would be a much Jonger treatise on the sub-
ject.

The authors are grateful for helpful advice and comments from
David E. Daykin, Richard P. Stanley, and David J. Kwiatkowsky.
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