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We regret that an incomplete manuscript of the article Polynomials for directed
graphs appeared in the last volume of this journal [Congressus Numerantium 94
(1993), pp. 187-201]. The following page should have appeared between those num-
bered 193 and 194 in the published paper.
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from a root. (See Proposition 2.5.)

Chung and Graham [4] have introduced an interesting polynomial invariant of
unrooted digraphs, the cover polynomial. Unlike the polynomials already mentioned
in this section, the cover polynomial satisfies a deletion/contraction property some-
what similar to (T3), though it does have the property that the appropriate notion
of contraction is not symmetric: the initial and terminal vertices of the edge being
contracted are treated differently.

4. Two order-dependent polynomials.

In the discussion subsequent to Proposition 2.6, it is noted that complete recursive
descriptions of f, and f; are not possible. Nevertheless, the notions of 2-isthmus and
2-loop are similar to the notions of isthmus and loop in a graph or matroid. Recall
that an edge e in a rooted digraph D is a 2-isthmus iff e is in every maximal * rooted
arborescence (i.e., € is in every 2-basis), and is a 2-loop iff it is in no maximal * rooted
arborescence. We will define a polynomial on rooted digraphs recursively, using these
notions of isthmus and loop. We will also distinguish between 2-loops which are
ordinary loops (i.e., those in which the initial and terminal vertices coincide), and
2-loops which are not, which we will call reversed loops. (The term “loop” means
“ordinary loop”.)

We now define a polynomial f7(D) = f+(D,0;z,y,z) associated to a rooted di-
graph D whose underlying undirected graph is connected, with respect to an ordering
O on E(D). This definition is based on the recursive definition (T3).

Definition 4.1.
(a) If D = {}, then fs(D) =1.
(b) Let e be the first edge (in the ordering O) which emanates from x.
1. f1(D) = zf;(D/e) if ¢ is a 2-isthmus.
2. f2(D) =yfr(D —e) if e is a loop.
3. fi(D) = fi(D ~ e) + f+(D/e) otherwise.
(c) If no edge emanates from x, then let e be the first edge directed into %, i.e., e
is a reversed loop. Then f7(D) = zf;(D/e).

The next proposition can be proven using the definition and induction.

Proposition 4.2. Suppose D has a spanning arborescence rooted at x. Then for
any ordering O, (D) is a polynomial in z and y (i.e., no z term appears).

If D has no spanning * rooted arborescence, then it is still easy to describe the
behavior of the variable z. Let R(D,*) denote the set of vertices in D which are
reachable from *. Let H be the induced rooted subdigraph on R(D, *) and G/H the
rooted subdigraph obtained from D by contracting all of H to the single vertex *.

Lemma 4.3. f7(D) = f7(H)f7(G/H).




