ON THE CONSISTENCY, COMPLETENESS, AND CORRECTNESS PROBLEMS

by

*
Harvey Friedman
Ohio State University

May, 1979

Revised June, 1979

G8del's second incompleteness theorem rules out the possibility
of constructing a syntactically definite comprehensive modell of
mathematical practice in which a consistency proof for the model can
be given within the model, provided that the model is based on arbitrarily
long finite derivations.

However, G8del's second incompleteness theorem and nothing we have
been able to prove rules out the possibility of constructing a syntactically
definite comprehensive model of mathematical practice'in which a consistency
proof for the model can be given within the model, where the model is instead
based on a realistic upper bound on the size of derivations. I do believe
that a suitable finite incompleteness theorem can be established to rule
this out, but I have only obtained partial results.

Specifically, here is an outline of a possible program which would more
or less establish the consistency of mathematics within mathematics.

Firstly, a syntactically precise model of mathematics is constructed

based on the axioms of ZFC such that the number of symbols in a formal derivation

*
This research was partially supported by NSF grant MCS 78-02558.

ledel in the general scientific sense, not in the sense of a relational structure.
374



of a theorem is closely tied to the number of symbols an author would use
in a complete proof of that theorem. The usual axioms and rules of
inference are inadequate in this regard, particularly since they do not
allow the introduction of new constant, relation or function symbols given
by explicit definition, used for the purpose of abbreviation, in the course
of a derivation. This must be allowed. The logic should be given in terms
of a sultable linearized natural deduction system which is generous in its
single step inference rules.

Secondly, a diverse collection of mathematical proofs are formalized
in this " realistic ZFC" and the number of characters is counted. Or
without giving complete formalizations, the number of characters involved
is estimated. For definiteness, a specific list of 200 characters is allowed
for realistic ZFc.

At this point, a difficulty enters. What do we mean by, say, the Riemann
mapping theorem in realistic ZFC? In this framework, the Riemann mapping
theorem will be given by a series of explicit definitions (and perhaps state-
ments of theorems Justifying the well definedness of these definitions (e.g.,
the univalence of introduced function symbols)), ending in one particular
formula being labelled the Riemann mapping theorem. A proof of the Riemann
mapping theorem is to take place as a proof of its given statement from the
axioms of ZFC where the explicit definitions preceding the statement of the
Riemann mapping theorem are also taken as axioms. Of course, as in all proofs
in realistic ZFC, further symbols will be introduced by explicit definition
in the course of this proof for the purpose of abbreviation.

We give some guidelines for success in this second part of the program.

A printed page of mathematics has about 1000 characters. A short book therefore
375



has about 100,000 characters, and a treatise has about 1,000,000 characters.

I would venture a guess that if theorems such as the Riemann mapping
theorem, Jordan curve theorem, and Lebesgue's differentiation theorem come
out to not more than 200,000 characters, and simpler theorems such as the
fundamental theorem of algebra (elementary proof), fundamental theorem of
calculus, and the fundamental theorem of arithmetic come out to no more than
50,000 characters from scratch in realistic 7ZFC, then it would be generally
regarded as successful. But I don't really know, since we do not have any
measurable experience with the actual formalization of nontrivial theorems
in suitable formal systems. There simply are no suitably realistic formal systems.

Thirdly, the precise syntax of realistic ZFC is formally given within
realistie ZFC. Thus the symbols are defined. The terms are defined, The
formulas are defined. Needed syntactic operations on the formulas are defined.
The proofs are defined. 1In the process, new symbols are introduced by explicit
definition, not only to denote the syntactic categories and operations, but
also as auxiliary definitions to facilitate the development.

Assuming the success of the second part of this program, and depending
on how complicated a form of realistic ZFC is used, this development should
take no more than, say, 100,000 characters. Perferably 20,000 characters.

The development ends with the presentation of the desired consistency
statement, asserting that realistic ZFC has no contradiction in < n steps,
where n 1is a specific number given in the ( realistic ZFC formalization
of the) decimal notation.

I think that any choice of n between, say, 108 and 1012 is relevant
for the consistency problem for mathematical practice. Treatises may build,

one on top of another, to perhaps a chain of 100. O0f course, there may be over

376



time, a production of 1,000,000 treatises from 1,000,000 productive
mathematicians, From the point of view of chains of treatises, we are
interested in proofs in realistic ZFC with < 108 characters. From
the point of view of total production of treatises, we are interested in
proofs in realistic ZFC with < 1012 characters.

Fourthly and finally, a proof totally within realistié ZFC is
given of the consistency statement in part 3. If 108 is used in part
3, then the proof the consistency statement is to use no more than 108
characters and preferably much less.

An interesting possibility is that a proof of 108 - consistency 1is
carried out with < 106 characters. Thus a proof that no chain of 100
treatises can contain a contradiction can itself be proved in one treatise.
Another interesting possibility is that a proof of 106-consistency is
carried out with < lO5 characters. Thus a proof that no treatise can contain
a contradiction can itself be proved in a short book.

Truly wild additional possibilities exist. For instance, a proof of

6

108-consistency is carried out with < 107 characters, where the consistency proof

does not use the axiom of infinity!

We now present an argument which does rule out some of the most extreme
possibilities.

In the course of the part 3 development, we may assume that < , én, Prf,
Neg, and Conj have been introduced, with the intention that x <y iff x
and y are natural numbers with x less than y . (x) is the number of
characters in the formula x (of realistic ZFC) if x 1is such a formula,
@ o.w. Prf(x,y,z) iff =x is a proof of formula y in realistic ZFC

with assumptions 2z . Neg(x) is the negation of the formula x if x 1is

377



a formula; ' o.w. Conj(x,y) is the conjunction of the formulas =x and
y if they are formulas; undefined o.w.

We assume that the consistency statement formulated in part 3 is:
~8x) (Fy) (Prf(x, Conj(y,Neg(y)),P) & on(x) < t) , where t 1is a closed term in-
volving simple arithmetical language introduced in the development in part
3.

To each formula ¢ of realistic ZFC, there will be a closed term
#(©0) wusing only symbols in the part 3 development such that #(¢) will
represent ¢ 1in a sense made clear below, The number of characters in #(co)
will be at most, say, four times the number of characters in ¢ . The process
of passing from a formula ¢ to the closed term #(¢) can be easily formalized
in realistic ZFC, as well as the process of syntactic substitution. We
augnment the part 3 development by developing the formal definition of the
function symbol Sub. The intention is that Sub(x) is the formula resulting

1

from replacing every free occurrence of the variable y' in the formula x
by the closed term #(x) . This augmented part 3 development is an insignificant
extension, and so we retain our upper estimate of 100,000 characters.

We also have a cloged term #($) for representing any possibly empty
finite sequence of formulas © in realistic ZFC. The intention is that
#(N) = ¢, and that #(p) is the sequence of #w;) , where © = (wl""’¢h> .
We let Dev be the augmented part 3 development, viewed as the sequence of its
definitions, and we assume that this extension of # to sequences is part of
this augmented part 3 development.

Consider the formula o = ~(&x)(Prf(x,Sub(y),#(Dev)) & fn(x) < t ). Next
consider the sentence 1V = wi<w) = ~(8x)(Pre(x,sub(#(®)), #(Dev)) &on(x) < t) .
The length of this sentence is roughly 200,000 characters.

378



Now the number t 1is to denote an actual natural number \t\ .

Assume by way of contradiction that | is provable in realistic
ZFC with Dev, using < \tl characters. Since #({) 1is to represent
in realistic ZFC, we are able to prove (x)(Prf(x,#({),#(Dev))) in
realistic ZFC with Dev. The delicate point 1s what upper bound on an
X can be obtained in realistic ZFC with Dev?

We will assume that the introduction of associative function symbols
such as concatenation, addition and multiplication are allowed. With such
function symbols, which are of course binary, no parentheses ig required
in the syntax when stringed together. This is especially useful in the
formal representation of finite sequences. Thus xmy is the sequence of
length 2 whose first term is x and whose second term is y .

Since the proof of ¢ 1s liable to involve many introductions of new
symbols defined in terms of old, we are going to have to establish that these
new symbols are indeed new. Since this involves formally matching pairs to
prove that the proof of ¢ 1is a proof of ¢ , we are running into perhaps
t2 . My feeling is that t2 will do, and we are able to prove
(Ex) (Pre(x, #(¥), #(Dev)) & on(x) < t2) , which is not enough for a contradiction.

Instead assume that ¢ 1s provable in realistic ZFC with Dev, using
S,JTET characters. We then can prove (8x)(Prf(x,#(y),%4(Dev)) & x < t) in
realistic ZFC with Dev. Since #({) = Sub(#(¢)) 1is provable in re-
alistic ZFC with Dev, we have a contradiction.

We have thus "shown" that realistic ZFC with Dev does not brove ¥
with < VW?J' characters.

let ¢ = ~0, and so o= (8x)(Prf(x,Sub(#(¢)),#Dev)) & In(x) < t) .

Consider o > (¥x)(Prf(x,#(c), ¥ Dev)) & fn(x) < tg) . By the same considerations
379



as above, this implication is provable in realistic ZFC with Dev, and
the number of characters is tied to the number of characters in the formula.
We give the estimate of 1,000,000,

Now we obviously have a proof of o + (#x)(Prf(x,Neg(# o)), ¥« Dev)) &
x < t) in realistic ZFC with Dev using < 1,000,000 characters since
Neg(#(c)) = sub(#(¢)) can be proved with < 1,000,000 characters. Hence
we have a proof of o + (¥x)(dy)(Prf(x,Conj(y,Neg(y)),P)& n(x) < t2-+t-+l)
in realistic ZFC with Dev using < 3,000,000 characters.

Recall that o cannot be refuted iising < VWET characters. Hence
~x ) (Hy ) (Prf(x, Conj(y,Neg(y)),#) & on(x) < tg-kt-Fl) cannot be proved in
realistic ZFC with Dev using < ,/[€] - 3,000,000 characters.

Our "result" begins to have significance for the consistency statement
around lO3O characters. Thus with some lack of confidence, we give the

following proposition.

THESIS. If the consistency statement in part 3 of the program is for proofs
with n > 1030 characters, then the consistency proof must use at least

nl/LL characters.

T hope that someone is willing to do the necessary hard thinking for a
really satisfactory discussion. Nevertheless, it is obvious that we have
come nowhere near to ruling out the interesting possibilities raised earlier.
The beginnings of the construction of truly "realistic"  systems can be

found in Syntax and semantics of mathematical text, April 1977, unpublished.

This method of proof of course yields finite forms of GBdels second in-

completeness theorem for the usual unrealistic formal systems.

380



We also conjecture that for any reasonable system, a proof of consistency
for proofs with < n characters requires roughly o™ characters. More
specifically, for every k +there is an m such that for all n >m , any
proof of n-consistency requires more than nk characters. Observe that
this conjecture implies P % NP .

We now wish to consider the completeness and correctness problems.

A good way of discussing the complexity of sentences is in terms of
Turing machines. Thus we now assume that the development of Turing machines
is part of Dev. Or also assume that the development of your favorite reasonable
programming language is part of Dev. - -

Consider the following properties of n, m, p, q, t, and systems T, S

which include Dev.

1. (Consistency). There is a proof in T wusing < n characters that
"there is no proof in S of the conjunction of a sentence with its negation

“using < m characters."

2. (E-completeness). For every program P wusing < p characters which
eventually halts at the empty input, it is provable in T wusing < n characters

that "P eventually halts at the empty input."

3. (/-completeness). For every program P wusing < p characters which
never halts at the empty input, it is provable in T wusing < n characters

that "P never halts at the empty input."

4. (Bounded completeness). For every program P wusing < p characters
which halts at the empty input in <t steps, it is provable in T wusing

< n characters that "P halts at the empty input in <t steps."

381



5 (Bouﬁded correctness). There is a proof in T using < n characters

that "for every program P using < p characters, if there is a proof in

S using <m characters that" P halts at the empty input in <t steps,"

then P halts at the empty input in <t steps."

6. (Uniform bounded correctness). There is a proof in T using <n
characters that "for every program P wusing < 5 characters and inputs

x using < q characters, if there is a proof in § wusing < m characters
that "P halts at the input x in Sz steps,” then P halts at the

input x in <t steps."”

7. (F-correctness). There is a proof in T wusing < n characters that
"for every progran P using < -1; characters, if there is a proof in g
using <m characters that "P eventually halts at the empty input,"

then P eventually halts at the empty input."

-

8., (Uniform @-correctness). There is a proof in T wusing < n characters
that "for every program P using < p characters and inputs x using < g
characters, if there is a proof in § wusing <m characters that "P
eventually halts at the input x ," then P eventually halts at the input

x "

9. (V-correctness). There is a proof in T wusing < n characters that
"for every program P using < p characters, if there is a proof in S
using <m characters that "P never halts at the empty input,” then P

never halts at the empty input."”

10. (Uniform V-correctness). There is a proof in T wusing < n characters
that "for every program P using < p characters and inputs x using < q

characters, if there is a proof i§82§ using <m characters that " P never



10

1

halts at the input x ," then P never halts at the input x .

11, (Vid-correctness). There is a proof in T using < n characters
that "for every program P using < p characters, if there is a proof
in § using <m characters that " P eventually halts at every input,"

then P eventually halts at every input."

12, (Uniform ViA-correctness). There is a proof in T wusing < n characters
that "for every program P using < p characters and first input x using
< q characters, if there is a proof in S using < m charaéters that

"P eventually halts using X as the first input and any second input,"

then P eventually halts using x as the first input and any second

input."

13. (B7-correctness). There is a proof in T wusing <n characters that

"for every program P using 5;5 characters, 1f there is a proof in S

using <m characters that " P never halts at some input," then P never

halts at some input."

1k, (Uniform @v-correctness). There is a proof in T wusing < n characters

that "for every program P using < p characters and first input x using

< E characters, if there is a proof in S using < m characters that

" P never halts using x as the first input and some second input,"” then

P never halts using x as the first input and some second input."

6 8

An interesting choice of numbers for these might be: n = 10", m = 10" ,
p=10 , q=10" , t =10, and § =T = ZFC + Dev . Tt is easy to refute
2, 3, 7-10 under this choice. We know nothing else of any interest, except that
from what we sketched above, n must be at least roughly m;/u (for n > 1030).

And again, it does not help matters if S8 1is instead T without infinity.
383



