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Abstract

Razborov and Rudich have shown that so-called natural
proofs are not useful for separatingP fromNP unless hard
pseudorandom number generators do not exist. This famous
result is widely regarded as a serious barrier to proving
strong lower bounds in circuit complexity theory.

By definition, a natural combinatorial property satisfies
two conditions, constructivity and largeness. Our main re-
sult is that if the largeness condition is weakened slightly,
then not only does the Razborov–Rudich proof break down,
but such “almost-natural” (and useful) properties provably
exist. Specifically, under the same pseudorandomness as-
sumption that Razborov and Rudich make, a simple, ex-
plicit property that we call discrimination suffices to sep-
arate P/poly from NP ; discrimination is nearly linear-
time computable and almost large, having density 2−q(n)

where q grows slightly faster than a quasi-polynomial func-
tion. For those who hope to separate P from NP using
random function properties in some sense, discrimination
is interesting, because it is constructive, yet may be thought
of as a minor alteration of a property of a random function.

The proof relies heavily on the self-defeating character
of natural proofs. Our proof technique also yields an un-
conditional result, namely that there exist almost-large and
useful properties that are constructive, if we are allowed
to call non-uniform low-complexity classes “constructive.”
We note, though, that this unconditional result can also be
proved by a more conventional counting argument.

1. Introduction

In a famous paper [4], Razborov and Rudich intro-
duced the concept of a natural combinatorial property of a
Boolean function. They showed on the one hand that almost
all lower bounds in circuit complexity theory proved up to
that time (specifically, all non-relativizing, non-monotone,
superlinear lower bounds) had employed natural proper-

ties, and on the other hand that natural properties cannot
be used to separate P fromNP unless 2n

ε-hard pseudoran-
dom number generators do not exist. Their result is widely
regarded as a serious barrier to proving strong circuit lower
bounds.

In more detail, if Γ and Λ are complexity classes, then
Razborov and Rudich say that a property of Boolean func-
tion on n variables is Γ-natural of density δn and use-
ful against Λ if (roughly speaking) the property is Γ-
computable (from the truth table of a given Boolean func-
tion), if it holds for 22n

δn Boolean functions, and if it con-
tains no Λ-computable Boolean functions. They showed
that if Γ = Λ = P/poly and δn = Ω(2−poly(n)), then no
such properties exist unless 2n

ε-hard pseudorandom num-
ber generators do not exist. Informally, if a property is con-
structive (Γ is sufficiently weak) and large (δn is sufficiently
large), then it is not likely to be useful for proving strong
circuit lower bounds.

It follows that if we believe in hard pseudorandom num-
ber generators but still wish to prove circuit lower bounds,
then we are led to ask just how non-constructive and/or
small a property needs to be in order to circumvent the
so-called “naturalization barrier.” Rudich [6] has shown
that if we allow ourselves to assume a stronger pseudoran-
domness hypothesis, then the naturalization barrier remains
intact even if constructivity is weakened to NP̃/poly-
constructivity. On the other hand, as pointed out by a referee
of this paper, for any fixed k there are properties computable
in time 2n

k+1 that are useful against circuits of size nk (sim-
ply use brute-force search).

In this paper we investigate the weakening of the large-
ness condition. The main result is that under the same
2n

ε-hard pseudorandomness assumption of the original
Razborov-Rudich paper, we can explicitly exhibit a nearly-
linear-natural1 property that is useful against P/poly and
whose density is 2−q(n) where q grows slightly faster than
a quasi-polynomial function. More precisely, let ψ(n, g)

1By this we mean that Γ = DTIME(n(log n)c) for some constant c.



denote the number of Boolean functions of n variables
that are computable by Boolean circuits with at most g
gates. If 2n

ε-hard pseudorandom number generators ex-
ist, then for any superpolynomial, subexponential func-
tion γ there exists a nearly-linear-natural property of density
Ω(2−ψ(logn, γ(logn))) that separates NP from P/poly. Of
course, the pseudorandomness hypothesis trivially implies
the existence of constructive properties that separate NP
from P/poly; for example, simply take an explicit family
of NP -complete Boolean functions. However, this latter
family has much lower density than 2−ψ(logn, γ(logn)).

The main idea of our proof is to exploit the “self-
defeating nature” of natural proofs. Assume initially that
natural, useful properties do not exist. This means that every
attempt to find a natural property that discriminates noncon-
structive functions from constructive ones is confounded by
some constructive function that manages to slip in. The key
observation is that a natural property is itself just a con-
structive function (a constructive function of a truth table,
that is, but a truth table is just an arbitrary binary string).
Therefore we have identified a feature that every construc-
tive function has: When we attempt to use it as a discrimi-
nator, it is always confounded by some (other) constructive
function. So if we consider the property of discrimination,
i.e., of “not being confounded by any constructive func-
tion,” then discrimination is a useful property. It is easy to
check that discrimination is constructive, and almost large.

The argument up to this point already allows us to de-
duce an unconditional theorem (Theorem 2 below): There
exist (non-uniformly) constructive, useful, almost-large
properties. For either our initial assumption was false and
some constructive, useful, large properties exist, or the par-
ticular property of discrimination is constructive, useful,
and almost large. We do not know which is the case, but
either way, some constructive, useful, almost-large property
exists.

If we now allow ourselves to assume the existence of
2n

ε-hard pseudorandom number generators, then we can
eliminate one horn of our dilemma and conclude that dis-
crimination is natural and useful. Moreover, discrimination
contains a function inNP , so discrimination separates NP
from P/poly. This is our main result (Theorem 3 below).

Note that this argument is not just a simple counting or
diagonalization argument, but exploits specifically the self-
defeating character of natural proofs, in a way that is rem-
iniscent of (though not quite the same as) Avi Wigderson’s
argument that there is no natural proof that the discrete log-
arithm is hard. Now it turns out, as we show later, that
Theorem 2 can be proved—and even strengthened—using
a more conventional counting argument. However, we do
not know of any such way to prove Theorem 3.

We hope that these results will give some insight into
how to bypass the naturalization barrier. If 2n

ε-hard pseu-

dorandom number generators do not exist, then of course
the naturalization barrier evaporates. On the other hand, if
such generators do exist, then our results show that there
exists at least one property (namely, discrimination) that
separates NP from P/poly and that is both constructive
and—as we shall see shortly—only a “minor alteration” of
a random property.

2. Background definitions

We write N for the positive integers, and our logarithms
are always base 2. All gates in our Boolean circuits are as-
sumed to have just two inputs. We use the notation (xn)
to denote a sequence x1, x2, . . . , and whenever we refer to
a sequence (fn) of Boolean functions, we always under-
stand that fn is a function of n variables. Given a function
λ : N → N, we write SIZE(λ) to denote the complexity
class comprising all sequences (fn) of Boolean functions
for which there exists a constant c such that the minimum
circuit size of fn is at most cλ(n) for all sufficiently large n.

Now let us review some fundamental concepts from [4].

Definition 1. A Boolean function property (or just property
for short) is a sequence C = (Cn) where each Cn is a set
of Boolean functions on n variables.

Definition 2. If Γ is a complexity class and (δn) is a se-
quence of positive real numbers, then a property (Cn) is
Γ-natural with density δn if

1. (largeness) |Cn| ≥ 22n

δn for all sufficiently large n;
and

2. (constructivity) the problem of determining whether
fn ∈ Cn, given as input the full truth table of a
Boolean function fn on n variables, is computable
in Γ.

Note that our definition of natural differs slightly from
that of Razborov and Rudich; for them, a natural property is
one which contains a large and constructive property. This
difference will do no harm, because our results assert the ex-
istence of certain natural properties in our sense, and a prop-
erty that is natural in our sense is also natural in Razborov
and Rudich’s sense.

Later on we will be particularly interested in the case of
nearly-linear-natural properties, which we define to mean
Γ = SIZE(N logN) in the non-uniform case and Γ =
DTIME(N(logN)c) for some constant c in the uniform
case. Here we have used an uppercase N to emphasize that
“nearly linear” means nearly linear in N = 2n, the size of
the truth table of fn.

Next we recall the definition of a useful property.

Definition 3. If Λ is a complexity class, then a property
(Cn) is useful against Λ if for every sequence (fn) of



Boolean functions satisfying fn ∈ Cn for infinitely many n,
(fn) /∈ Λ.

For our purposes we also need a slightly weaker notion,
which we shall call quasi-usefulness.

Definition 4. If Λ is a complexity class, then a property
(Cn) is quasi-useful against Λ if for every sequence (fn)
of Boolean functions satisfying fn ∈ Cn for all sufficiently
large n, (fn) /∈ Λ.

The difference between usefulness and quasi-usefulness
is that there may be infinitely many n for which a quasi-
useful property is easy to compute, whereas this cannot hap-
pen for a useful property.2 However, a quasi-useful prop-
erty retains the important characteristic of not containing
any Λ-computable sequence of Boolean functions. So for
the purpose of separating Λ from a higher complexity class,
quasi-usefulness suffices.

Definition 5. Fix ε > 0. A family of functions Gn :
{0, 1}n → {0, 1}2n is a 2n

ε-hard pseudorandom number
generator if for every circuit C with fewer than 2n

ε gates,

|Prob[C(Gn(x)) = 1] − Prob[C(y) = 1]| < 1/2n
ε

.

Here x is chosen at random from {0, 1}n and y is chosen at
random from {0, 1}2n.

The fundamental result of Razborov and Rudich is the
following.

Theorem 1 (Razborov–Rudich). Fix d > 1. If 2n
ε-hard

pseudorandom number generators exist, then there is no
P/poly-natural property with density 2−O(nd) that is useful
against P/poly.

Note that in Razborov and Rudich’s paper, they prove the
above theorem only for d = 1, but it is easy to check that
their proof goes through for any fixed d > 1.

For our last piece of background, recall from the intro-
duction that we let ψ(n, g) denote the number of Boolean
functions of n variables that can be computed by Boolean
circuits with at most g gates. The value of the density δn
in our results is dictated by Shannon’s familiar upper bound
on ψ(n, g) (see for example [7, Chapter 4, Lemma 2.1]).

Proposition 1. ψ(n, g) ≤ (g + n + 1)2g16gg/g! for all n
and g. In particular, if g ≥ n then for all sufficiently large g,
ψ(n, g) < g2g .

2As pointed out by a referee, our distinction between useful and quasi-
useful is the same as the distinction between diagonalization a.e. and di-
agonalization i.o. in [5].

3. The main result

In an earlier version of this paper, we considered both
Theorems 2 and 3 to be main results. Later, we discovered
a simpler proof of Theorem 2, which we shall sketch below
in Section 4. Nevertheless, we have decided to keep the
original statement and proof of Theorem 2 intact because
we feel that it helps clarify the “self-defeating” nature of
our proof technique.

Given two functions γ : N → N and λ : N → N, we say
that γ outstrips λ if for every constant c > 0 there exists n0

such that γ(n) > cλ(n) for all n ≥ n0.

Theorem 2. Let γ, λ : N → N be functions such that
γ outstrips λ and such that m logm ≤ γ(m) ≤ 2m/m
for all m. Let Γ = SIZE(γ) and let Λ = SIZE(λ).
Then there exists a Γ-natural property (Cn) with density
Ω(2−ψ(logn, γ(logn))) that is quasi-useful against Λ.

The main tool in our proofs of Theorems 2 and 3 is the
following concept.

Definition 6. Given γ : N → N, we define a Boolean func-
tion f on n variables to be γ-discriminating if either of the
following two conditions holds:

1. n is not a power of 2.

2. n = 2m for some m and

(a) f(x) = 1 for at least 2n/n values of (the n-digit
binary string) x, and

(b) f(x) = 0 if x is the truth table of a Boolean
function on m variables that is computable by a
Boolean circuit with at most γ(m) gates.

We remark that the fraction 2n/n in part 2(a) of the above
definition is not tight; it could be made slightly larger or
smaller, but 2n/n is a convenient choice that suffices for our
needs.

If we let Mγ
n be the set of all γ-discriminating Boolean

functions on n variables, then (Mγ
n ) is a Boolean function

property that we shall call γ-discrimination.
The following easy lemma shows that γ-discrimination

is constructive, and gives a lower bound on its density.

Lemma 1. If γ : N → N satisfies γ(m) ≤ 2m/m
for all m, then γ-discrimination is a nearly-linear-natural
property with density Ω(2−ψ(logn, γ(logn))). If γ is time-
constructible then γ-discrimination is a uniformly nearly-
linear-natural property.

Proof. Let n denote the number of variables of our Boolean
functions. If n is not a power of 2 then the lemma is trivial,
so assume that n = 2m.



First we note that, since γ(m) ≤ 2m/m, it is easy to
deduce from Proposition 1 that the number of Boolean cir-
cuits with m inputs and at most γ(m) gates is much less
than 22m

= 2n.
Let us check constructivity. To verify that a given truth

table is the truth table of a γ-discriminating function, we
must check that the fraction of entries equal to 1 is at least
1/n, and we must also check that the entries indexed by
truth tables of functions computable by circuits with at most
γ(m) gates are 0. Let N = 2n be the size of the truth table.
In the non-uniform case, counting the number of 1’s can be
done using N additions and one comparison of n-bit num-
bers, which can be done using O(N logN) gates. Also, for
eachn, the set of truth table entries that must be 0 is fixed, so
in a non-uniform model of computation, this condition can
be checked using a number of gates that is proportional to
the number of forced 0’s, and this is certainly O(N logN)
(evenO(N)).

In a uniform model of computation, counting 1’s clearly
takes nearly linear time, but to check the forced 0’s we must
first compute γ(m), then run through each possible Boolean
circuit in turn, computing its n truth table values, and check-
ing that the corresponding entry of the given truth table is 0.
If γ is time-constructible then computing γ(m) takes time
O(2m), so evaluating γ at m = log logN takes time at
most polylogarithmic in N . The total number of circuits
we must enumerate is at most N , so the entire computation
takes time at most N multiplied by some factors that are
polylogarithmic in N .

It remains to estimate the density. If we were to ig-
nore condition 2(a) in the definition of a γ-discriminating
function, then we would simply be counting functions that
must be 0 in certain positions and are unrestricted other-
wise, so the total number of functions on n variables would
be precisely 22n

−ψ(m,γ(m)). From this we can get a lower
bound for the true number of γ-discriminating functions by
subtracting off the total number of Boolean functions on n
variables whose truth tables have at most 2n/n entries equal
to 1. This latter quantity is

2n/n
∑

i=0

(

2n

i

)

= O

((

2n

2n/n

))

= 2O(2n logn)/n,

using standard estimates (large deviations, Stirling’s for-
mula). This means that for some constant c, the number
of γ-discriminating functions is at least

22n
−ψ(m,γ(m)) − 2c(2

n logn)/n

= 22n

2−ψ(m,γ(m))(1 − 2c(2
n log n)/n−2n+ψ(m,γ(m))).

Again, ψ(m, γ(m)) is vanishingly small compared to
22m

= 2n, so the density is indeed eventually lower-
bounded by a constant times 2−ψ(m,γ(m)).

We can now prove Theorem 2.

Proof of Theorem 2. We argue by contradiction. Assume,
as a reductio hypothesis, that there is no Γ-natural prop-
erty (Cm) with density Ω(2−ψ(logm,γ(logm))) that is quasi-
useful against Λ. Then we claim that γ-discrimination
(Mγ

n ) is quasi-useful against Λ.
To see this, pick an arbitrary sequence of functions

fn ∈ Mγ
n . Define a property (Cm) by letting a function

of m variables with truth table x be in Cm if and only if
f2m(x) = 1. Then by condition 2(a) in the definition of a
γ-discriminating function, (Cm) has density Ω(2−m). By
assumption, γ(logm) ≥ logm log logm, and it is easy to
see that there are more than m distinct Boolean functions
computable with logm log logm gates and logm inputs, so
the density of (Cm) is Ω(2−ψ(logm,γ(logm))). By condi-
tion 2(b), if gm ∈ Cm is any sequence of Boolean functions,
then the minimum circuit size of gm exceeds γ(m), and
hence (gm) /∈ Λ since γ outstrips λ. In other words, (Cm)
is quasi-useful (in fact, useful) against Λ. Therefore, by our
reductio hypothesis, (Cm) /∈ Γ. It follows that (fn) /∈ Γ,
and a fortiori (fn) /∈ Λ. Therefore (fn) is quasi-useful
against Λ, as claimed.

But since n logn ≤ γ(n) ≤ 2n/n, Lemma 1 tells us
that (Mλ

n ) is Γ-natural with density Ω(2−ψ(logn, γ(logn))).
Combined with the quasi-usefulness against Λ that we just
proved, this fact contradicts our reductio hypothesis, so the
theorem is proved.

Now for our main result.

Theorem 3. Assume that, for some ε > 0, 2nε-hard pseudo-
random number generators exist. Let γ be any superpolyno-
mial, subexponential, time-constructible function. Then γ-
discrimination is a (uniformly) nearly-linear-natural prop-
erty of density Ω(2−ψ(logn, γ(logn))) separating NP from
P/poly.

Proof. We know from Lemma 1 that γ-discrimination is
nearly-linear-natural with density Ω(2−ψ(logn, γ(logn))). To
see that γ-discrimination is quasi-useful againstP/poly, we
argue as in the proof of Theorem 2: Given fn ∈ Mγ

n , we
define the property (Cm) by letting a function with truth ta-
ble x be in Cm if and only if f2m(x) = 1. Because γ is su-
perpolynomial, (Cm) is useful3 against P/poly. Also Cm
has density Ω(2−m), which is large enough for Razborov
and Rudich’s result to apply. That is, since we have assumed
that 2n

ε-hard pseudorandom number generators exist, we
can conclude that (Cm) cannot be P/poly-constructive.
Therefore (fn) /∈ P/poly, so γ-discrimination is indeed
quasi-useful against P/poly.

Finally, let (fn) be the sequence of γ-discriminating
functions that are 0 only when forced to by condition 2(b)

3Here we need usefulness and not merely quasi-usefulness, since we
want to quote the Razborov–Rudich result.



and that are 1 otherwise. Then (fn) is in NP , in the sense
that the language L defined by

x ∈ L ⇐⇒ fn(x) = 0

is in NP .4 The reason is that, for n a power of 2, a Boolean
circuit with truth table x is a certificate for membership inL,
and such a circuit has size γ(logn), which is polynomial
in n, the size of x, since γ is subexponential.

Note that the density of γ-discrimination is less than
2−q(n) for every quasi-polynomial q, because γ is super-
polynomial and therefore logψ(log n, γ(logn)) is not quite
polylogarithmic. However, if we choose γ to be a slowly
growing superpolynomial function, then the density is not
much less than 2−q(n) for quasi-polynomial q. For example,
if γ is quasi-polynomial then the density is 2−Q(n) where

Q(n) = exp exp poly(log logn).

4. Theorem 2 improved

In this section we present a simple counting argument
that improves the bound in Theorem 2.

Theorem 4. Let γ, λ : N → N be functions such that γ
outstrips λ and such that γ(n) ≤ 2n/n for all n. Let Λ =
SIZE(λ). Then there exists a non-uniformly nearly-linear-
natural property with density 1/ψ(n, γ(n)) that is useful
against Λ.

Proof. We give a sketch; complete details will appear in the
full version of this paper.

As usual, think of Boolean functions on n variables as
represented by their truth tables. Let Gn be the set of
Boolean functions on n variables computable by circuits of
size γ(n)/2. For each g ∈ Gn, imagine a Hamming ball
of volume 22n

/ψ(n, γ(n)) centered at g (by a Hamming
ball centered at g we mean the set of all Boolean func-
tions within a certain Hamming distance from g). There
are ψ(n, γ(n)/2) < ψ(n, γ(n)) such balls, so the total vol-
ume of these balls is less than 22n . Therefore there must
exist a function fn outside all of these balls. It follows
that there is a Hamming ball Bn of volume 22n

/ψ(n, γ(n))
around fn that is disjoint from Gn. Then since γ outstrips
λ, (Bn) is a property that is useful against Λ. Its density
is 1/ψ(n, γ(n)). Moreover, testing for membership in Bn
amounts to computing Hamming distance from fn, which
can be done non-uniformly in nearly-linear time.

It would be interesting to know if the density bound in
Theorem 3 can also be improved.

4Some authors might prefer to say that (fn) is in co-NP , but since we
could have chosen to interchange the roles of 0 and 1 in the definition of
γ-discrimination, this distinction is of no importance.

5. Final remarks

It is probably difficult to prove unconditionally that, say,
nlogn-discrimination is useful against a strong complexity
class Λ, not only because that would separate NP from Λ,
but also because γ-discrimination is closely related to the
circuit minimization problem, whose complexity is known
to be difficult to get a handle on; see [2].

However, even as a potential candidate for an almost-
natural proof of NP 6⊆ P/poly, γ-discrimination has an
illuminating feature. Namely, the only thing that prevents a
γ-discriminating function from looking like a random func-
tion is the presence of certain forced 0’s in the truth table.
Moreover, the proportion of forced 0’s goes to zero fairly
rapidly as n goes to infinity. This illustrates the fact that
largeness can be destroyed by imposing what seems intu-
itively to be a relatively small amount of “structure” on
a random function. Therefore, the intuition that there is
some constructive property of random functions that suf-
fices to prove strong circuit lower bounds is not completely
destroyed by the Razborov–Rudich results; a minor alter-
ation of a random property may still work.

Finally, it is worth noting that existing circuit lower
bound proofs might still be mined for ideas to break the
naturalization barrier. Some linear lower bounds, such as
those of Blum [1] and Lachish and Raz [3], do not rela-
tivize and are not known to naturalize. Even proofs that
are known to naturalize are not necessarily devoid of useful
ideas. For example, in the course of analyzing a proof by
Smolensky, Razborov and Rudich identify three properties
C1 ⊆ C2 ⊆ C3 that are implicit in the proof, and show that
C2, and a fortiori C3, are natural. However, C1 is construc-
tive but not known to be large, so it is conceivable (though
admittedly unlikely) that C1 is only almost large and is ac-
tually useful. Of course, one would still need to identify
and use some feature of C1 that is not shared by C2 in order
to prove a stronger circuit lower bound than Smolensky’s,
but the point is that the usefulness ofC1 is not automatically
ruled out by the fact that Smolensky’s argument naturalizes.
In theory, it could still be fruitful to study C1.
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