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1. Introduction

Many well-known problems in number theory involve studying the setSof numbers that can
be represented as sums of elements of another setA of positive integers. In some cases,A is
sparse and we want to know ifSnevertheless contains a lot of integers—e.g.,Smay contain
all integers (as in Waring’s problem) or all even integers (as in Goldbach’s conjecture). In
other cases,A is dense and we want to know ifSnevertheless avoids a lot of integers—e.g.,
S may avoid long arithmetic progressions or have low natural density (see, for instance,
[10] and the references therein).

The problem that we study in this paper is a relatively little-known variation on the latter
theme. A setS⊂ N is said to beavoidableif there exists a partition ofN into two disjoint
setsA and B such that no two distinct elements ofA sum to an element ofS and no two
distinct elements ofB sum to an element ofS. We say that the partition{A, B} avoids S
or that S is avoided by{A, B}. If the pair of setsA and B is unique, thenS is said to
be uniquely avoidable.We are interested in the question of which sets are avoidable (or
uniquely avoidable).

The theory of avoidable sets has existed for twenty years, yet surprisingly little is known.
Only a few special sets of integers have been shown to be avoidable. For example, the
following theorem of Evans [4] is typical.

Theorem 1. Let S= {sn} be a set of positive integers such that s1 < s2, (s1, s2) = 1, and
sn = sn−1+ sn−2 for n > 2. Then S is uniquely avoidable.
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One might hastily conclude from the scarcity of general theorems in this area that the
topic of avoidable sets is not very fruitful. We hope to show in this paper that in fact the
subject is deeper than it appears at first glance and that much more remains to be discovered.
Our main evidence for this claim lies in the following two theorems.

Theorem 2. Letα be an irrational number between1 and2, and define

Aα
def= {n ∈ N | the integer multiple ofα nearest n is greater than n},

Bα
def= {n ∈ N | the integer multiple ofα nearest n is less than n}.

Let Sα be the set of all positive integers avoided by the partition{Aα, Bα}. Then Sα contains
all numerators of continued fraction convergents ofα.

Theorem 3. Letα, Aα, Bα, and Sα be as in Theorem2. Then every element of Sα is either
the numerator of a convergent ofα, the numerator of an intermediate fraction, or twice the
numerator of a convergent.

In the next three sections we prove these theorems and show how they significantly
generalize many previous results. The reader is expected to be familiar with the elementary
theory of continued fractions as given in, for example, [8, chapters I and II] or [9, chapter 7].
However, we will give explicit references for some of the less trivial facts. We also use the
notationbxc and{x} for the integer and fractional parts ofx respectively.

In the remaining sections we investigate some other questions connected with avoidable
sets and present some open problems.

2. Proof of Theorem 2

Lemma 1. Letα be a positive real number and let p/q be a continued fraction convergent
of α. Thenbnαc = bnp/qc for all integers n lying strictly between0 and q.

Proof: Sincep/q is a convergent,|α − p/q| ≤ 1/q2 [8, Eq.(30)], so∣∣∣∣nα − np

q

∣∣∣∣ ≤ n

q2
≤ q − 1

q2
<

1

q
,

or

np

q
− 1

q
< nα <

np

q
+ 1

q
(2.1)

for 0< n < q. Now (p,q) = 1, so for 0< n < q we have

1

q
≤ np

q
−
⌊

np

q
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≤ q − 1

q
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or ⌊
np

q

⌋
+ 1

q
≤ np

q
≤
⌊

np

q

⌋
+ q − 1

q
.

Combining this with (2.1) yields⌊
np

q

⌋
< nα <

⌊
np

q

⌋
+ 1,

and sobnαc = bnp/qc for 0< n < q. 2

Lemma 2. Letα be a positive real number and let p/q be a continued fraction convergent
of α. Then for0< n < q,

{nα} < α

2
H⇒

{
np

q

}
≤ p

2q

and {
np

q

}
<

p

2q
H⇒ {nα} < α

2
.

Proof: We prove only the first implication; the proof of the second implication follows a
similar line of reasoning in reverse.

The lemma is trivial ifα = p/q, so assume from now on thatα 6= p/q.
Assume that{nα}<α/2. We wish to show that{np/q} ≤ p/2q. By Lemma 1,bnαc =
bnp/qc. Therefore

nα −
⌊

np

q

⌋
<
α

2

and hence{
np

q

}
= np

q
−
⌊
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q

⌋
<
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q
− nα + α

2
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2q
+ p(2n− 1)

2q
− α(2n− 1)

2
,

i.e., {
np

q

}
<

p

2q
+ (2n− 1)

(
p

2q
− α

2

)
. (2.2)

If p/q < α then we are done. Otherwise,p/q > α because by assumptionα 6= p/q.
Sincep/q is a convergent ofα, we have|p/q − α| ≤ 1/q2, and therefore (2.2) implies{

np

q

}
<

p

2q
+ 2n− 1

2q2

<
p

2q
+ 1

q
. (2.3)
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We now split into two cases.

Case1. p is even.Sincep is even,{np/q} ≤ p/2q if and only if{
np

q

}
<

p

2q
+ 1

q
,

and we are done, by (2.3).

Case2. p is odd.Sincep is odd,{np/q} ≤ p/2q if and only if{
np

q

}
<

p+ 1

2q
.

Hence, in light of (2.3), it suffices to show that{np/q} 6= (p+ 1)/2q.
Suppose towards a contradiction that{np/q}= (p+ 1)/2q. Sincep/q>α, p/q must

be thei th convergent ofα for some odd numberi by [8, Theorem 4]. Now

pj qj−1− pj−1qj = (−1) j−1

for all j ≥ 1 by [8, Theorem 2]. By takingj = i we deduce that

pqi−1 ≡ 1 (mod q)

sincei is odd. By assumption{np/q} = (p+ 1)/2q, so

qqi−1

(
np

q
−
⌊

np

q

⌋)
= qqi−1

(
p+ 1

2q

)
.

If we multiply this out and reduce moduloq we obtain

n ≡ qi−1

(
p+ 1

2

)
(mod q).

Hence

2n ≡ qi−1(p+ 1) ≡ 1+ qi−1 (mod q)

or

2n− 1≡ qi−1 (mod q).

Since 0< n < q, this congruence implies that 2n− 1 equals eitherqi−1 or q + qi−1.
Letai+1 denote the(i + 1)st partial quotient ofα, which exists becauseα 6= p/q. Then

qi+1 = ai+1q + qi−1 by [8, Theorem 1], and∣∣∣∣ p

q
− α

∣∣∣∣ ≤ 1

qqi+1
= 1

q(ai+1q + qi−1)
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by [8, Theorem 9]. Combining these facts with (2.2) yields{
np

q

}
<

p

2q
+ (2n− 1)

(
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2q
− α

2

)
≤ p

2q
+ (q + qi−1)

(
p

2q
− α

2

)
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2q
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2

(
p

q
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)
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2q
+ q + qi−1

2
· 1

q(ai+1q + qi−1)

= p

2q
+ 1

2q
· q + qi−1

ai+1q + qi−1

≤ p

2q
+ 1

2q
.

This contradicts{np/q} = (p+ 1)/2q, as desired. 2

Lemma 3. Letα be an irrational number between1 and2 and let p/q be a convergent
of α that is greater thanα. Then{qα}>α/2 provided q6= 1.

Proof: We first prove the lemma for the case in whichp/q is the first convergent ofα.
Let a1 denote the first partial quotient ofα and letp1/q1 denote the first convergent. We
need to show thatp1− q1α < 1− α/2. Sincep1 = a1+ 1 andq1 = a1, this is equivalent
to

a1+ 1− a1α < 1− α/2,
or

α > 1+ 1

2a1− 1
.

But this holds, becausea1 = q1 = q 6= 1 so 2a1− 1> a1.
In general, our goal is to show thatp−qα < 1−α/2. Now sincep/q > α, p/q cannot

be the zeroth convergent, and hence

0< p− qα ≤ p1− q1α,

so the general case follows from the special case proved above. 2

Proof of Theorem 2: Fix a convergentp/q of α. We begin by showing that no two
distinct integers inAα sum top. First, we may assume thatq 6= 1, sinceq= 1 and 1<α<2
together implyp= 1 or p= 2, and no two distinct positive integers can sum to 1 or 2. For
the rest of this proof we assume thatq 6= 1, p 6= 1, andp 6= 2.
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Assume now thatx andy are integers inAα that sum top; we shall show thatx = y.
Let mα be the positive integral multiple ofα nearestx. Then sincex ∈ Aα, mα > x, and
moreovermα < x+1 for otherwise(m−1)α would be closer tox thanmα. Therefore, we
may writex = bmαc, and similarly we may writey = bnαc for some positive integern.

We claim thatm < q. First of all,m ≤ q, for if m were larger thanq thenx = bmαc
would be at leastp (since|qα − p| < 1), butx is necessarily less thanp sincex+ y = p.
The remaining possibility is thatm = q andx = p − 1, but then Lemma 3 tells us that
(m− 1)α would be closer tox thanmα would be. Thusm<q, and similarlyn<q.

By Lemma 1, it follows thatx = bmp/qc andy = bnp/qc. Now since 0< m < q and
0< n < q, we have {

mp

q

}
= r

q
and

{
np

q

}
= s

q

for some integersr ands with 0< r < q and 0< s< q. Fromx + y = p it follows that

mp

q
+ np

q
= p+ r + s

q
.

Multiplying both sides byq, we see thatr + s = kp for some positive integerk. Now
1 < α < 2, so 1≤ p/q ≤ 2, orq ≤ p ≤ 2q. Since 0< r < q and 0< s < q, it follows
that 0< r + s< 2q ≤ 2p, sok = 1, i.e.,r + s= p.

Now x andy are inAα, so{mα} < α/2 and{nα} < α/2. By the first part of Lemma 2,
this implies

0<
r

q
≤ p

2q
and 0<

s

q
≤ p

2q
.

Sincer + s= p, these inequalities forcer = s= p/2. Thus

mp

q
−
⌊

mp

q

⌋
= np

q
−
⌊

np

q

⌋
,

somp≡ np(mod q). Since(p,q) = 1, this impliesm≡ n (mod q), and since 0< m< q
and 0< n < q, we must havem= n. This proves thatx = y, as required.

Now there are exactlyb(p − 1)/2c pairs of distinct positive integers whose sum isp.
To finish the proof, it suffices to show thatAα contains exactly one integer from each of
these pairs (for thenBα cannot contain two distinct integers that sum top). To show this, it
suffices to show thatAα containsb(p− 1)/2c integersother than p/2 that are less thanp,
since we have already shown thatAα cannot containboth integers from a “bad” pair.

The arguments we gave for showing thatx = bmαc for somem with 0 < m < q show
that the elements ofAα less thanp are in one-to-one correspondence with integersn in the
range 0< n < q such that{nα} < α/2. Thus, from the second part of Lemma 2, it suffices
to find b(p− 1)/2c integersn in the range 0< n < q such that{

np

q

}
<

p

2q

andbnαc 6= p/2.
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Let np modq denote the remainder whennp is divided byq. We are seeking integersn
such that 0< n < q and

np− q

⌊
np

q

⌋
<

p

2
.

The left-hand side lies between 0 andq and it is congruent tonp moduloq, so it equals
np modq. Now p andq are relatively prime, so asn ranges from 1 toq−1,np modq also
takes on each value from 1 toq−1 exactly once. Therefore we can indeed findb(p−1)/2c
integersn with the desired property: simply take theb(p − 1)/2c integersn such that
np modq < p/2. It remains only to show that for no suchn canbnαc equalp/2.

Suppose to the contrary that some suchn satisfiesbnαc = p/2. By Lemma 1,bnαc =
bnp/qc. Therefore

np− qp

2
<

p

2
,

i.e.,n < (q + 1)/2 orn ≤ (q − 1)/2. We therefore have

p

2
≤ nα ≤ (q − 1)α

2
,

or p ≤ (q − 1)α, which is not possible. 2

Remark. Michael Bennett (personal communication) has suggested the possibility that a
positive integerp is avoided by(Aα, Bα) if and only if p is the numerator of a fractionp/q
satisfying 1≤ p/q ≤ 2, (p,q) = 1, and the properties listed in Lemmas 1, 2, and 3. He
has made considerable progress towards a proof.

3. Proof of Theorem 3

We begin with a careful statement of a well-known fact that is sometimes sloppily stated.

Lemma 4. Letα be a positive real number and let pn−1/qn−1 and pn/qn be two consecutive
convergents of the continued fraction representation ofα, with n> 0. Then

|qnα − pn| ≤ |qn−1α − pn−1|,

with equality if and only if n= 1 andα = a0+1/2 for some integer a0. On the other hand,
if c/d is a fraction with0< d < qn, then

|dα − c| ≥ |qn−1α − pn−1|.

Proof: This is essentially [9, Theorems 7.12 and 7.13], except that we have stated the
theorem for arbitrary realα instead of only for irrationalα. The proofs are easily modified to
cover the general case. (We remark that the lemma also follows from [8, Theorem 17], but the
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statement of this latter theorem is slightly incorrect;p0/q0 fails to be a best approximation
of the second kind wheneverα ≥ a0+ 1/2.) 2

Lemma 5. Letα be a positive real number and let pn−1/qn−1 and pn/qn be two consecutive
convergents of the continued fraction representation ofα, with n > 0. Suppose p is an
integer such that

|qnα − p| < |qn−1α − pn−1|.

Then p= pn.

Proof:
Case1. |qn−1α − pn−1| ≤ 1/2. Then by Lemma 4,

|qnα − pn| ≤ |qn−1α − pn−1| ≤ 1/2,

and thereforeqnα is at least 1/2 away from any integer other thanpn. Thus if p satisfies

|qnα − p| < |qn−1α − pn−1| ≤ 1/2,

we must havep = pn.

Case2. |qn−1α− pn−1|> 1/2. Then repeated application of Lemma 4 implies that|q0α−
p0|> 1/2, wherep0/q0 is the zeroth convergent. Nowq0 = 1 andp0 = bαc; therefore
the fractional part ofα exceeds 1/2, forcing the first partial quotienta1 to equal one.
Then p1 = bαc + 1 andq1 = 1, so

|q1α − p1| = 1− |q0α − p0| < 1/2.

This shows us that Case 2 arises only ifn = 1 andα − bαc > 1/2. When this happens,
the only integerp 6= p1 that has a chance of satisfying

|q1α − p| < |q0α − p0|

is the integer on the other side ofq1α from p1. But for this p,

|q1α − p| = 1− |q1α − p1| = |q0α − p0|,

so the desired inequality cannot in fact be satisfied even for thisp. This proves the lemma.

2

Lemma 6. Letα be a positive real number and let pn−1/qn−1, pn/qn, and pn+1/qn+1 be
three consecutive convergents of the continued fraction representation ofα, with n > 0.
Let c/d be a fraction whose denominator satisfies qn−1 < d < qn+1. If

|qn−1α − pn−1| > |dα − c|, (3.1)
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then either c/d is in lowest terms and is an intermediate fraction having a denominator
between qn and qn+1, or c/d = pn/qn. (In the latter case, c/d is not necessarily in lowest
terms).

Proof: Assume that there existc andd satisfyingqn−1 < d < qn+1 and (3.1) but such
thatc andd are not the numerator and denominator of an intermediate fraction (in lowest
terms) having a denominator betweenqn andqn+1. We will show thatc/d = pn/qn in
several steps. First we construct a fractionc′/d′ satisfying (3.1) andqn−1 ≤ d′ < qn+qn−1.
(When we say thatc′/d′ satisfies (3.1) we mean of course (3.1) withc andd replaced by
c′ andd′ respectively.) We then show thatc′/d′ = pn/qn, and finally we show that this in
turn implies thatc/d = pn/qn.

Let an+1 be the(n + 1)st partial quotient ofα. By definition [8, equation (20)], the
intermediate fractions with denominators betweenqn andqn+1 are (in lowest terms) the
fractions of the form

pn−1+ kpn

qn−1+ kqn
where 0< k < an+1.

Let p = c− pn−1 and letq = d − qn−1. Then 0< q < an+1qn, so there exist unique
integersk0 and j with 0 ≤ j < qn and 0≤ k0 < an+1 such thatq = k0qn + j . Let
i = p− k0 pn. By assumption,c andd are not simultaneously equal to the numerator and
denominator of any one of the above intermediate fractions, andq 6= 0, soi and j cannot
both be zero. Also by assumption,c/d satisfies (3.1), so

|qn−1α − pn−1| > |(qn−1+ q)α − (pn−1+ p)|
= |qn−1α − pn−1+ k0(qnα − pn)+ jα − i |. (3.2)

The quantitiesqn−1α−pn−1 andqn+1α−pn+1 lie on the same side of zero withqn+1α−pn+1

being closer. (Ifα is rational andpn+1/qn+1 is the last convergent ofα, thenqn+1α− pn+1

is actuallyequal to zero, but this does not invalidate the argument in the next sentence,
which is all that we use the observation in the previous sentence for.) Note that since
0≤ k0 < an+1, the quantity

X
def= qn−1α − pn−1+ k0(qnα − pn)

lies betweenqn−1α − pn−1 andqn+1α − pn+1; in particular,X lies betweenqn−1α − pn−1

and zero. (It could equal the former; this will not be a problem.)
We now claim that

| jα − i | ≥ |qn−1α − pn−1|. (3.3)

If j 6= 0, then this follows from Lemma 4 becausej < qn. If j = 0, theni 6= 0, and
the left-hand side is a positive integer whereas the right-hand side is at most one. This
establishes (3.3).

Now (3.3) forcesjα − i andqn−1α − pn−1 to have opposite sign. For if they had the
same sign, then (3.3) together with the fact thatX lies betweenqn−1α − pn−1 and zero
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would imply that addingjα − i to X would result in a number with absolute value greater
than that ofqn−1α − pn−1, contradicting inequality (3.2).

Next we claim that

|qn−1α − pn−1+ jα − i | < |qn−1α − pn−1|.
To see this, consider first the case whereqn−1α−pn−1< 0. Thenjα−i > 0 andqnα−pn> 0,
and in light of (3.3) we have

0≤ qn−1α − pn−1+ jα − i ≤ qn−1α − pn−1+ k0(qnα − pn)+ jα − i

= |qn−1α − pn−1+ k0(qnα − pn)+ jα − i |
< |qn−1α − pn−1|,

where the last inequality follows from (3.2). This establishes the claim in this case, and the
same argumentmutatis mutandiscovers the caseqn−1α − pn−1 > 0.

This last claim, however, just says that if we setc′ = pn−1 + i andd′ = qn−1 + j , then
c′/d′ satisfies (3.1), and since 0≤ j < qn, we haveqn−1 ≤ d′ < qn+qn−1. This completes
the first step of our argument. We now wish to show thatc′/d′ = pn/qn.

We may assume thatd′ ≥ qn, by (3.1) and Lemma 4. Let us now assume towards a
contradiction thatd′ > qn. For simplicity we shall assume thatqn−1α − pn−1 < 0; the
reader can check that the argument is easily modified to handle the caseqn−1α− pn−1 > 0.

Using this assumption, we haveqnα − pn > 0 and

d′α − c′ = qn−1α − pn−1+ jα − i ≥ 0.

Since 0< d′ < qn + qn−1 ≤ qn+1, by Lemma 4d′α − c′ must be further away from zero
thanqnα − pn, i.e.,

d′α − c′ > qnα − pn > 0.

Therefored′α − c′ − (qnα − pn) is closer to zero thand′α − c′ is, andd′α − c′ is in turn
closer to zero thanqn−1α − pn−1 is, sincec′/d′ satisfies (3.1). This means that the fraction

c′ − pn

d′ − qn

is a better approximation of the second kind toα than pn−1/qn−1 is. Butd′ − qn < qn−1,
so this contradicts Lemma 4.

Therefore,d′ = qn. By Lemma 5, the inequality (3.1) implies thatc′ = pn. It remains
to show thatc/d = pn/qn. This is straightforward:

c

d
= pn−1+ i + k0 pn

qn−1+ j + k0qn
= c′ + k0 pn

d′ + k0qn
= pn + k0 pn

qn + k0qn
= pn

qn
.

This completes the proof. 2

Remark. In fact, the converse of Lemma 6 holds, but we do not need this fact.
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Proposition 1. Letα be an irrational number such that1 < α < 2. Let c be a positive
integer that is neither the numerator of an intermediate fraction nor the numerator of a
convergent. Then there exists a convergent p/q such that p and c− p are either both in Aα
or both in Bα.

Proof: Choosed to minimize the quantity|dα − c|. We now wish to letn be the largest
positive integer such thatqn < d, but we must first check that such ann exists. Sinceα is
between 1 and 2, its zeroth convergent equals one and its first convergent equals(a1+1)/a1

for some integera1> 0. From the definition of intermediate fraction we see that every
fraction of the form(i + 1)/ i with 1 ≤ i ≤ a1 is an intermediate fraction or a convergent.
Sincec is not the numerator of any of these,c ≥ a1 + 2. In particular,c ≥ 3 sod ≥ 2.
Therefore there exist integersN ≥ 0 such thatqN < d. Let n be the largest such integer.
We claim thatn ≥ 1. For if n = 0, thend ≤ q1 = a1, and sinceα < (a1+ 1)/a1, we have
dα < a1+1, contradictingc ≥ a1+2. It therefore makes sense to speak of the convergent
pn−1/qn−1, and we shall do so.

By our choice ofn, qn < d ≤ qn+1. Now qnα − pn andqn−1α − pn−1 have opposite
signs. Letm be the element of the set{n, n− 1} such thatqmα − pm has the same sign as
dα − c. We shall argue thatpm andc− pm are in the same set (i.e., they are either both
in Aα or both inBα). We claim that to prove this it suffices to show that

|qmα − pm| ≤ |dα − c|. (3.4)

To see that this does indeed suffice, begin by noting that

(d − qm)α − (c− pm) = (dα − c)− (qmα − pm).

Now in view of (3.4) and the fact thatdα−c andqmα− pm have the same sign, this implies
that(d − qm)α − (c− pm) has the same sign asdα − c; moreover,(d − qm)α is closer to
c− pm thandα is toc, so(d− qm)α is the multiple ofα closest toc− pm. It follows that
c− pm is in the same set asc. From (3.4) we see thatqmα is the multiple ofα closest topm,
so the fact thatdα − c andqmα − pm have the same sign implies thatc is in the same set
as pm. Hencec− pm and pm are in the same set, as required.

We are reduced to proving (3.4). We handle first the special case whered = qn+1. By
assumption,c 6= pn+1, so c must be the integer on the opposite side ofdα from pn+1.
Therefore

|dα − c| = 1− |qn+1α − pn+1|
andm= n. We need to show that

1− |qn+1α − pn+1| ≥ |qnα − pn|.
But this follows from the inequalities

|qn+1α − pn+1| ≤ |qnα − pn| < 1/2,

which hold becausen ≥ 1.
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If d 6= qn+1, so thatqn < d < qn+1, then Lemma 6 provides the key to proving (3.4).
For if c/d = pn/qn, thendα− c is just a multiple ofqnα− pn and hencem= n, and (3.4)
is obvious. Otherwise, Lemma 6 (together with Lemma 4) tells us that the only way for
(3.4) to be violated is form to equaln − 1 and forc/d to equal an intermediate fraction
in lowest terms. But this contradicts the fact thatc is not the numerator of an intermediate
fraction. This completes the proof. 2

Theorem 3 follows immediately from Proposition 1.

4. Relationship of Theorems 2 and 3 with prior work

Theorem 1 subsumes several earlier results: the cases1 = 1 ands2 = 2 was first posed
by Silverman [12] and solved independently by numerous people, and the cases1 = 1 and
s2 arbitrary was proved by Alladi, Erd˝os, and Hoggatt [1]. Evans [4] also showed that if
S= {sn} satisfies 2| s1s2, (s1, s2) = 1, andsn = sn−1+ sn−2 for n > 2, thenS is uniquely
avoidable, but that ifs1 > s2 and 2- s1s2, thenS is not avoidable.

Our results do not completely subsume Evans’s results, because our theorems say nothing
about uniqueness. However, our results do generalize Evans’s in the following sense: given
any setS that Evans has shown to be (uniquely) avoidable—i.e., a set of the form specified
in Theorem 1 or in the previous paragraph—we can find an irrational numberα between 1
and 2 such that{Aα, Bα} avoidsS. To see this, consider first the cases1 < s2. If s1 6= 1,
sets0 = s2 mods1. If s0 6= 1, sets−1 = s1 mods0. Continue in this way untils−k = 1 for
somek ≥ −1; this must happen at some point since(s1, s2) = 1. Now letα be the number
whose partial quotients are

1, s−k+1− 1,

⌊
s−k+2

s−k+1

⌋
,

⌊
s−k+3

s−k+2

⌋
, . . . ,

⌊
s2

s1

⌋
, 1, 1, 1, 1, 1, . . .

It is easy to see that the numerators of the convergents ofα ares−k, s−k+1, s−k+2, . . . , so
by Theorem 2,{Aα, Bα} does indeed avoidS.

If s1 > s2 and 2| s1s2, then applying the above argument withs2 ands3 in place ofs1

ands2 shows that for a suitable choice ofα, {Aα, Bα} avoids every element ofS except
possibly fors1. In fact,{Aα, Bα}must avoids1 as well. For Theorem 1 asserts that{Aα, Bα}
is theonlypartition avoiding{s2, s3, . . . }. But the partition avoiding all ofS is also unique
and ita fortiori avoids{s2, s3, . . . }. Hence{Aα, Bα} must coincide with the partition that
avoids all ofS.

We remark that ifs1 = 1 ands2 = 2, so thatSis the set of Fibonacci numbers, then it turns
out thatα = τ = (1+√5)/2, and it is well known that the numerators of the convergents ofτ

are the Fibonacci numbers. In general, for any of Evans’s sets, the associated irrationalα

is some element ofQ(
√

5).
The relevance of continued fractions to the theory of avoided sets has not been noticed

explicitly before, but it is implicit in [3]. To explain the main result of [3], we must first
recallBeatty’s theorem[2]. Beatty’s theorem states that ifα andβ are positive irrational
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numbers such that 1/α + 1/β = 1, then the sets

{bnαc |n ∈ N} and {bnβc |n ∈ N}

partitionN into two disjoint sets. As Beatty partitions arise naturally in many contexts, it
is natural to ask for the connection between Beatty’s theorem and the theory of avoidable
sets. In [1] it is proved that the partitions in Theorem 1 cannot be Beatty partitions.
(They actually only showed this for the cases1= 1 but their argument extends easily to
the general case.) However, Hoggatt and Bicknell-Johnson [7] and the second author have
independently noticed that there is actually a close relationship between Beatty’s theorem
and avoidable sets. Let{Aτ , Bτ } denote the partition avoiding the Fibonacci numbers.
Observe that 1/τ + 1/τ 2 = 1, so that if we setα = τ in Beatty’s theorem thenβ = τ 2.
The observation of Hoggatt-Bicknell-Johnson and the second author is that

Aτ⊆ {bnτc |n ∈ N} and Bτ⊇{bnτ 2c |n ∈ N}.

Thus, we can obtain{Aτ , Bτ } from a Beatty partition by transferring some elements from
one half of the partition to the other.

The main result of [3] is that the elements that need to be transferred have a simple
description:

Aτ = {bnτc |n ∈ N} \ {bnτc |n ∈ N and{nτ } > τ/2}
and

Bτ = {bnτ 2c |n ∈ N} ∪ {bnτc |n ∈ N and{nτ } > τ/2}.
(4.1)

Now, it is not hard to see that the right-hand sides of these equations are equivalent to
the definitions ofAτ and Bτ given in Theorem 2. Thus, Theorem 2 may be regarded as
generalizing the main result of [3] from the caseα = τ to the case of arbitrary irrationalα.

Incidentally, the reason we say that continued fractions are “implicit” in [3] is that
the key lemma in that paper is really a well-known fact about continued fractions, but at the
time, the author was unaware of the theory of continued fractions, and hence did not state
the lemma in that language. In fact, only after we proved the main theorems of the present
paper did we notice the implicit continued fractions in [3].

One paper whose results we feel should be closely related to Theorems 2 and 3 is Zhu
and Shan [13], but so far we have had only partial success in establishing a connection.
([13] is in Chinese, but an English translation is available: [11].) Zhu and Shan consider
setsS= {sn} that are defined by a recurrence of the form

sn = sn−1+ sn−2+ k

for some fixed nonnegative integerk. Note that if we settn = sn + k, then

tn = tn−1+ tn−2,

so the Zhu-Shan sets may be regarded as “shifted Evans sets.” Now ifk is even, with
k = 2k′ for somek′, and if{A, B} is a partition avoiding the set{tn}, then we may subtract
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k′ from each element ofA and from each element ofB, discarding any nonpositive integers
that result. This produces a partition that avoidsS= {sn}. This establishes a connection in
the case of evenk, but we are not sure about oddk.

5. Saturated sets

Following [1] we say that a setS⊆N is saturatedif it is avoidable and it is maximal (with
respect to set inclusion) among all avoidable sets. In [1] it is asked if a saturated set is
necessarily uniquely avoidable. Although it might seem plausible to conjecture that the
answer is yes, Evans [4] exhibited a saturated set that is avoided in two different ways.
In this section we strengthen this result by showing that there exist saturated sets that are
avoided by arbitrarily large numbers of partitions.

To state our results more precisely, we first recall another definition from [1]. IfS⊆ N,
then thegraph G(S) of S is the graph whose vertex set isN and whose edges are the sets
{x, y} such thatx 6= y andx+ y ∈ S. It is easily seen thatS is avoidable if and only ifG(S)
is bipartite and thatS is uniquely avoidable if and only ifG(S) is bipartite and connected.
Moreover, ifG(S) hask connected components, then the number of partitions avoidingS
is 2k−1.

We also say that a setS⊆ N is doubly uniquely avoidableif it is uniquely avoidable and
there exists a unique partition of the odd positive integers into two disjoint setsA and B
such that no two distinct elements ofA sum to twice an element ofS and no two distinct
elements ofB sum to twice an element ofS.

The main result of this section is

Theorem 4. Let S be a doubly uniquely avoidable set that is maximal(with respect to set
inclusion) among all doubly uniquely avoidable sets. For k≥ 3, let

Sk = {1, 2, 3, 22, 23, 24, . . . ,2k−1} ∪ {2ks | s ∈ S}.

Then Sk is saturated and G(Sk) has k connected components.

That Theorem 4 is not vacuous is guaranteed by the following result.

Proposition 2. There are uncountably many distinct doubly uniquely avoidable sets that
are maximal among all doubly uniquely avoidable sets.

Proof: Let S = {sn} ∪ {1, 2} be any set that satisfies the following conditions:s1 = 3,
s2 = 5, andsn+1 equals either 2sn − 1 or 2sn − 2 for all n > 1. We claim thatS is doubly
uniquely avoidable.

One of the simplest general methods for demonstrating unique avoidability is induction
onn (cf. [6]). For example, to show thatSis uniquely avoidable, use the inductive hypothesis
that there is a unique partition (into two sets) of the positive integers less thansn that avoidsS.
If this is true for alln, thenSmust be uniquely avoidable. Here the inductive hypothesis is
easily checked for smalln. To pass fromn to n+ 1, we just need to consider the integers
m in the rangesn ≤ m < sn+1 in succession. Providedsn+1 is less than 2sn, uniqueness
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is guaranteed, because thenm andsn+1 − m are distinct and must be placed in opposite
sets, butsn+1 − m is less thansn and it is therefore already determined which half of the
partitionsn+1 − m must be in. In the case at handsn+1 = 2sn − 1 or sn+1 = 2sn − 2 so
uniqueness follows. To show existence, observe that we just need to ensure thatm can be
placed in such a way as to avoid all elements ofS that are less than 2m. In the case at hand,
there is only one such element ofS, namelysn+1, and hence it suffices to putm into the set
oppositesn+1−m.

The same idea works to show that there is a unique way to partition the odd integers so as
to avoid{2s | s ∈ S}. We begin by placing 1 and 3 in opposite sets so as to avoid 4= 2 · 2.
The induction argument proceeds as before, with only one additional subtlety: when we are
showing existence, there are two elements ofS for which we need to check avoidability:
2sn+1 and 2sn+2. Conceivably, we might not be able to avoid both of these simultaneously
when placing the odd integersm in the range 2sn ≤ m < 2sn+1. Actually, this potential
problem arises only for the numbers 2sn+1 − 1 and 2sn+1 − 3, which may sum to 2sn+2 if
sn+2 happens to equal 2sn+1 − 2. However, this is not a problem, because 1 and 3 are in
opposite sets, and hence the process of avoiding 2sn+1 will force 2sn+1 − 1 and 2sn+1 − 3
into opposite sets (providedsn > 3, so that 2sn − 3 is distinct from 3; but one can check
that no problems occur forsn = 3 either), thus automatically avoiding 2sn+2 as well. This
proves the doubly unique avoidability ofS.

We now “saturate” eachS by taking a doubly uniquely avoidable setS̄ that is maximal
among all doubly uniquely avoidable sets and that containsS. The set̄Sexists and is unique:
the integers that we must add toS are precisely those integersm that are avoided by the
unique partition avoidingS andwhose doubles are avoided by the unique partition of the
odd numbers avoiding{2s | s ∈ S}. There are clearly uncountably many distinctS’s, and
distinctS’s are avoided by distinct partitions{A, B}, so distinctS’s have distinct saturations.
This completes the proof. 2

We remark that the set of Fibonacci numbers is doubly uniquely avoidable, but we do
not need this fact so we omit the proof.

Proof of Theorem 4: We claim that the connected components ofG(Sk) are as follows.

W={m ∈ N | m≡ 0 (mod 2k)}
X={m ∈ N | m≡ ±2k−1 (mod 2k+1)}
Y={m ∈ N | m≡ 1, 5, 6 (mod 8)} ∪ {m ∈ N | m≡ −1,−5,−6 (mod 8)}

Z1={m ∈ N | m≡ 4 (mod 16)} ∪ {m ∈ N | m≡ −4 (mod 16)}
Z2={m ∈ N | m≡ 8 (mod 32)} ∪ {m ∈ N | m≡ −8 (mod 32)}

...

Zk−3={m ∈ N | m≡ 2k−2 (mod 2k)} ∪ {m ∈ N | m≡ −2k−2 (mod 2k)}

(If k = 3 then there are noZ’s.) Moreover, we claim that all these connected components
are bipartite. The bipartitions forY and for theZ’s are the ones suggested by their definitions
above, and the bipartitions forW andX are the ones forced on them by the doubly unique
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avoidability ofS: take the unique partition of the positive integers avoidingSand multiply
each number by 2k to obtain the correct partition forW, and take the unique partition of the
odd integers avoiding{2s | s ∈ S} and multiply each number by 2k−1 to obtain the correct
partition for X.

To prove these claims, let us begin by observing that two numbersm andm′ from distinct
components cannot sum to an element ofSk. (Here “component” just means one ofW,
X, Y, or Zi as defined above; we use the term “component” for convenience and its use
should not be construed as presupposing that theseare the components ofG(Sk) since we
have not shown that yet.) To see this, writem andm′ in binary notation and note that their
rightmost 1’s cannot be in the same position. Therefore they cannot sum to a power of 2.
Moreover, at least one of them has its rightmost 1 in one of thek least significant bits, and
hencem+m′ cannot be divisible by 2k. Finally,m+m′ 6= 3.

Next, let us show that if the components are partitioned in the way we described, then
two distinct numbersm andm′ from the same half of asinglecomponent cannot sum to
an element ofSk. In the case ofZi , m+m′ ≡ 2r−1 (mod 2r ) for somer ≤ k and hence
cannot be divisible by 2k; moreover it is clear thatm+m′ cannot equal a power of 2 since
m 6= m′. A similar argument covers the componentY. As for W and X, the elements
are too large to sum to a power of 2 less than 2k, and they avoid{2ks | s ∈ S} by the doubly
unique avoidability ofS. Finally,m+m′ 6= 3 again.

Now observe thatW andX are connected because of the doubly unique avoidability ofS.
Proving that each ofY andZi is actually connected can be done using an inductive procedure
similar to the one described in the proof of Proposition 2. The details are straightforward
and are left to the reader.

It remains to prove saturation. No integer of the form 2ks with s /∈ Scan be added toSk,
by the maximality ofS. Integersm that are not multiples of eight cannot be added toSk,
because they can be represented as sums of distinct elements from the same half ofY, as
follows. Observe that modulo 8, we have

−3 ≡ −5− 6, −2≡ 1+ 5, −1≡ 1+ 6, 1≡ −1− 6,

2 ≡ −1− 5, 3≡ 5+ 6, 4≡ −6− 6.

Except whenm = 1, 2, 3, 4, these congruences can be converted into pairs of distinct
integers summing tom, e.g., ifm = 17 thenm ≡ 1 (mod 8), and 1≡ −1− 6 so we can
write m as the sum of two integers, one congruent to−1 modulo 8 and the other congruent
to−6 modulo 8, i.e., 17= 7+ 10 or 17= 15+ 2.

It remains to show that integersm that are congruent to 8 modulo 16 or 16 modulo 32 and
so on cannot be added toSk. But this is easily proved using the same kind of argument as
in the previous paragraph, e.g., 8≡ 4+ 4 (mod 16), and this congruence can be converted
into a representation ofmas a sum of two distinct integers from the same half ofZ1—except
whenm= 8, but 8 is already inSk. 2

6. Open problems

In an earlier version of this paper, we posed as an open question the problem of charac-
terizing Sα precisely, since Theorems 2 and 3 provide only upper and lower bounds. We
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also conjectured thatSα is always uniquely avoidable. Both of these problems have very
recently been solved by Grabiner [5]. In particular, Grabiner has proved the following.

Theorem 5. If pn is the numerator of a convergent, then2pn ∈ Sα if and only if pn is odd,
and either(i) pn+1 is odd and an+1 ≥ 3, or (ii) pn+1 is even and an+1 ≥ 2, or (iii ) pn = 1.
If pn + kpn+1 is the numerator of an intermediate fraction, then it is in Sα if and only if
either(i) pn+1 is even, or (ii) k = 1 and pn is odd, or (iii ) k = an+2− 1 and pn+2 is odd.

To convince the reader that Grabiner’s results are definitely nontrivial, we remark that
it is natural to conjecture that the setSα consists precisely of numerators of “best approx-
imations” in some sense, but for the most natural notions of “best approximation”—e.g.,
best approximations of the first kind, or all fractionsp/q such that|α− p/q| ≤ 1/q2—this
conjecture is false. Also, the simple inductive method that we used in the proof of Propo-
sition 2 does not suffice in general to prove the unique avoidability ofSα; large “gaps” can
occur inSα.

One can ask more generally for a characterization ofall avoidable sets, or all uniquely
avoidable sets, or all saturated sets, or all saturated sets whose graph has a given number
of connected components. The setsSα do not exhaust the class of all saturated uniquely
avoidable sets. For example, the set

{3, 4, 8, 12, 17, 22, 43, 85, . . . }

(where each subsequent element is twice the previous element, minus one) is uniquely
avoidable but it can be shown that its saturation is not equal to any of our setsSα.

There are several results in the existing literature that can probably be generalized. For
example, in [3] it is proved that the setA′τ defined by

A′τ = {bnτc | n ∈ N} \ Aτ

satisfies

A′τ = {bnτ 3c | n ∈ Aτ }.

We hope this result can be generalized, but we are not sure how. As another example, [6]
considers Tribonacci numbers, sequences in which each term is the sum of the previous
threeterms in the sequence. It is not even obvious whether this kind of avoidable set has
any connection with continued fractions.

Many variations on existing ideas are possible. What if we drop the word “distinct” from
the definition of avoidable set? What happens if we consider algebraic integers rather than
rational integers? Clearly much more remains to be done.
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