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FROM THE EDITOR

Again, we are late - but soon we may be able to make some head-
way. See page 17 for our plans for catching up to a fairly normal publi-
cation schedule.

* k% ® %

Some readers may notice that the lines of type in this issue are just
a bit longer (29 picas - 43 inches) instead of the former 28 picas (4%
inches). This slight increase gives us the equivalent of about 1% extra
lines per page without changing the top-to-bottom type-space. Since
each issue contains at least 48 pages, this adds about 72 lines per
issue - or the equivalent of about 1% pages of material without adding
pages to each issue. You get more for your money - while we do‘it at
no extra cost.

Previously (in the February 1962 issue of RMM) we had introduced
several changes in format which, then, increased content. If we can
think of any other reasonable methods for getting more material per page
we will follow through.

* 0k * 0 ok %

The next issue of RMM will be the Combined Issue (April 1963 and
June 1963 issues). See page 17 for more details. Here is a partial list
of articles to appear in that issue:

A Clerihew ABC of Mathematics by J. A. Lindon (England)

Some delightful mathematical poetry.

Something New Behind the 8-Ball by Ronald Bergman (New York)
All about the new elliptical billiard table.

Magic Knight Tours on Square Boards - Part 2 by T. H. Willcocks
(England)

A sequel to Mr. Willcocks’ article in the December 1962 issue
of RMM (pages 9-13).

Dissections Into Unequal Squares by Ray C. Ellis (Massachusetts)

Squaring the square and squaring rectangles - the first of a
series of articles.

The Eight-Rook Problem by David Smith (Florida)

In how many ways can you place 8 rooks on a chessboard so
that no rook attacks another?

Infinite Geometry by Donald L. Vanderpool (Pennsylvania)
A glimpse into some unusual geometries.

Quadrilles by Wade E. Philpott (Ohio)

A beautiful piece of work on a domino recreation - with some
completely new results.

That’s only a sample! We’ll have our usual departments - some of
them expanded for the Combined Issue.

15 June 1963 J. S. M.

GEOMETRIC MAGIC SQUARES by Boris Kordemskii

Moscow, U.S.S.R.

A geometric magic square is an nxn array of n? distinct integers
with the property that the product of the n integers in any row, column,
or main diagonal is equal to the same magic constant, P.

An ordinary magic square generally consists of lwol 3ls
the first n® integers arranged in an nxn array such
that the sum of the n integers in any row, column,
or main diagonal is equal to the same magic con-| 4| 5116 | 9
stant, S.

Figure 1 shows a 4x4 ordinary magic square 4p11) 27
with a magic constant of 34.
1] 8113 |12

In this article we shall show several methods
by which geometric magic squares may be formed.

Figure 1

The first method, the Exponential Method, is based on a well-known
rule for the multiplication of numbers with exponents. The product of
a®, a9, and af is equal to a®****, If the base (in this case a) is the same
the numbers are multiplied together by adding the exponents.

It is clear that if we use the integers of an ordinary magic square
as the exponents of some base, we can form a geometric magic square.
Figure 2 shows an ordinary magic square and Figures 3¢ and 3b show
how conversion to geometric magic squares is accomplished. The magic
constant, P, for Figure 3a is 2'° or 32,768 and for Figure 3b it is 3*° or
14,348,907,

4 9 2 24 2° | 22 16 | 512 4
3 5 7 23 25 27 81 32 ]128
8 1 6 28 2t 26 256 2] 64
Figure 2 Figure 3a

3¢ 3° 32 81 }19683 9

33 35 37 27 243 | 2187

38 3t 3¢ 6561 3 729

Figure 3b

The second method of setting up magic squares with a constant
product is also based on an elementary idea: viz., that the processes of
addition and multiplication have a number of common features as do sub-
traction and division. As a result all letter formulas of ordinary magic

—3—
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squares vyith constant sums turn into letter formulas of geometric magic
squares, if multiplication is substituted for addition and division is sub-
stituted for subtraction. :

Thus, the known formula of m+x m-(x+y) mty
Kraitchik*, Figure 4, is easily turn-
ed into a formula for a geometric | m~(x-y) m m+(x-y)
magic square as shown in Figure 5.
5b is derived from 5a if all the ele- m-y m+x+y) m=x
ments in 5a are multiplied by xy
and if m=1. Figure 4
m
mx - 2 2
po my x2y 1 xy
my mx 2 2
= m — y xy x
m m
U x n 2,,2
y mxy o x x°y Yy
a Figure 5 b

In the Russian literature, the formula of V. P. Ermakov (1884) is
known for a magic square of the fourth order (Figure 6). Those who wish
may likewise convert it into an appropriate formula for a geometric magic
square.

A C D B a+b |-a-b

D B A C c-d |-a-c | a-c | c+d

B D Cc A -c+d |~a+c| atc |~-c-d

C A B D a-b | -atb
Figure 6

In both the Kraitchik and Ermakov formulas, the proper choices of
X anq y and o'f A, B, C,D,a,b, c, and d must be made to avoid dupli-
cate integers in the resulting geometric magic square. This may be done
by choosing different primes for their values.

* Maurice Kraitchik, Mathematical Recreations, Dover Publications, N. Y., 1953, page
148, figure 28.

FEBRUARY 1963 RECREATIONAL MATHEMATICS MAGAZINE 5

The third method is a means of forming a geometric magic square of
any order n with the least possible constant, P, for the square of the
given order. For this the following is necessary:

1. Take the smallest number having n? divisors and write down all
the divisors of that number.

2. Take any ordinary magic square of the nth order and for all of its
elements substitute the divisors found according to a definite rule which
will be clear from the examples which follow.

An integer, N, greater than 1, can be represented uniquely as the
product of prime numbers. That is,

a G ... P&

N=p11p22 Dy
where p;, p,, . . . p, are different prime numbers and a;, a, . . . @ are
positive integers. Then the total number of divisors of N is equal to

(a,+ 1)a,+ 1 - g+ 1)

For example, if a and b are prime, then N=a%b* has (2+1)X2+1) or
9 divisors. They are 1, a, a2, b, ab, a*b, b*, ab?, a*b®*. Nine divisors of
of the number a?b? make it possible to set up a geometric magic square
of the third order. To do so we take the ordinary magic square shown in
Figure 1 and successively substitute for the numbers 1, 2, 3,4, 5,6, 7,
8, 9 the nine divisors of a®b® in the sequence in which they are written
above giving Figure 7. If we take as a and b the lowest prime numbers,
2 and 3, we get a square of the third order with the smallest possible
product P =216 utilizing different integers (Figure 8).

b |a*?*| a 31|36 2
a* | ab | b* 4 6 9
ab*| 1 | a®b 18 11 12

Figure 7 Figure 8

The number N, =a*b® has (3+1)(3+1) or 16 divisors. N,=abcd also
has 16 divisors {(1+ 1)1+ 1)1 +1X1+1)=16]). If a=2, b=3, c=5, d=T7,
then N,=216 and N,=210. Since N, is the smallest of these numbers
having 16 divisors, we may construct a geometric magic square of the
fourth order with the smallest possible constant, P. We arrange the se-
quence of the divisors of the number abcd: 1, a, b, ab, c, ac, bec, abe, d,
ad, bd, abd, cd, acd, bcd, abcd. Now we take any ordinary magic square
of the fourth order, for example, the one which is drawn in the familiar
engraving Melancholy by Durer (Figure 9), and form a geometric magic
square with a constant P =44100 by sequential substitution as indicated
above. The set-up is shown in Figure 10.

MATH TEACHERS! — Don’t forget the NCTM Summer Meeting in
Eugene, Oregon, August 22-24, 1963. For Registration - Write to
Scott D. McFadden, 2489 Emerald, Eugene, Oregon.
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16 | 3 {2113 abed b a cd
5 |10 (11| 8 c ad bd abc
916 7]|12 d ac be abd
4 |15 |14 ] 1 ab bed | acd 1
Figure 9 Figure 10

The reader may wish to try his hand at composing geometric magic
squares with constant products from the divisors of the numbers N, =qa*b*
and N,=ab®. Will these constants, P, and P,, be the lowest poss1b1e
for geometrlc magic squares of the 5th and 6th orders?

* * 0 ok ok %

Later this year RMM will publish another set of unusual magic
squares (see RMM No. 5, October 1961, pages 24-29; RMM No. 7, Feb-
ruary 1962, pages 14-15). Perhaps some unusual examples of geometric
magic squares will be found by our readers. If so, we would certainly
like to see them.

We introduced the idea of anti-magic squares in the February 1962
issue of RMM (Anti-Magic Squares by J. A. Lindon, pages 16-19). An
anti-magic square is an nxn array of the integers from 1 to n? such that
sums of the rows, columns, and two main diagonals are all different.
Further, we restrict the 2(n +1) different sums to either of the series of
integers from %n(n?-1) to %n(n*+3)+1 (A to Z) or from (A-1) to (Z ~1).
For example, the 4th order sequences of different sums are 30 to 39 or
29 to 38; 5th order sequences of different sums are 59 to 70 or 60 to 71;
6th order - from 105 to 118 or 104 to 117; etc.

There are still no known systematic methods of forming anti-magic
squares, nor do we have any catalog or listing of the general properties
of anti-magic squares.

ROYAL V. HEATH FANS -
See page 33.

MAILING LABEL CODES? SUBSCRIPTION RENEWALS?
See page 17.

by D. C. Cross
Birmingham, England

MULTIGRADES

Many mathematicians, both amateur and professional, are interested
in multigrades, of which the following are examples:
1746+ 8%=2"+4"+ 9" forn=1, 2.
1*+5%+8"+122=2"+3"+10"+11* forn=1, 2, 3.
One property of a multigrade is that you can add the same quantity

to each term without affecting the relationship. This can be proved
quite simply, the proof for a 3rd order multigrade being as follows:

Say we have A™+B™*+C*+D*=E*+F*+G"*+H", forn=1, 2, 3.
Obviously, (A+R)+(B+R)+(C+R)+ (D+R)=(E+R)+(F+R)+(G+R)+(H +k).
Also, (A+R*+(B+EV+(C+Ek12+(D+k¥=A*+B*+C*+D*+2k(A+B+C + D) +4&?

=E?+F*+G*+H*+2R(E+ F + G+ H) +4k*
=(E+RP+(F+k)+(G+Ek)*+(H+R)>
And, (A+EP+(B+RP+(C+Eky¥+(D+k)®
=A*+B3+(C*+D*+3k(A2+B*+C*+D?*) +3k*(A+B +C + D) + 4F®
=E*+F*+G*+H*+3k(E*+F2+G*+H*)+3k*(E+F + G+ H) + 4k®
=(E+EP+(F+EP+(G+R);P+(H+E).

This means, taking a simple example, that we can alter the second

of our original two multigrades to read:

27 +67+97+13"=3"+4"+11*+12® forn=1, 2, 3.
Forming a multigrade is easy. Start with a simple equality such as:
1+4=2+3
Now add 4 to each term: 5+8=6+7.

Then, we can obtain a 2nd order multigrade by ‘‘switching sides”’
and combining. The formal proof for this is given later.

12+4% 46" +77=2"+3"+5"+8" forn=1, 2.
When adding 4 to each term, we chose that increase as the smallest
that would result in the 2nd order multigrade with all terms different.
To build up a 3rd order multigrade, from the above, we now add 8 to
each term. This gives:
92 +127+14™+15"*=10"+11"+137+16® forn=1, 2.

““Switching sides’’ and combining, as before, these give us:

17447 +67+77+10%+ 117+ 137+ 16" =2+ 3" + 5 + 87+ 9" + 127 + 14" + 157,
forn=1, 2, 3.

If, in this last transformation, we had added 6 to each side instead
of 8, the further ““switching’’ operatlon would have given a 3rd order
mu1t1grade in which the terms 7 and 8 would have appeared on both sides
of the identity. The reader may care to check this. Omlttmg those iden-
tical terms, we would have been left with:

17 +42+6%+9"+ 117+ 147 =2 +3"+5"+10" + 12" +13" forn=1, 2, 3.

We can continue in this way, ad infinitum, building up multigrades
of successively higher orders.

7
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The proof for the ‘‘switching’’ procedure follows. It is given only
for derivation of a 2nd order from a 1st order multigrade, but for succes-

sively higher order transformations the procedure can be proved similarly.

We start with x+y=(x—-2z)+(y+2)
Then, (x+R)+(y+R)=(x-2+R)+(y+2z+k)
Switching: x+y+(x-z+R)+(y+z+R)=(x-2)+(y+2)+(x+R)+(y+k)
Now take each side separately, summing the squares of the terms:
x2+y2+(x~z+R)V+(y+z+R)P=2(x*+y*+2*+ k*-xz + xk + yz + yk)

(x=2Y+(y+2)2+(x+ R+ (y+ k) =2(x*+y*+ 2+ R*~xz + xk + yz + yk)
This proves that the ‘‘switching procedure’ yields a valid 2nd order
multigrade for all values of x, v, 2, and k.

Two mathematicians, Prouhet and Tarry, some years ago proposed a
problem about multigrades which still interests mathematicians. In
effect, one is asked to find a multigrade of the nth order having (n+1)
terms on each side, for various values of n. For n=38, we have already
derived multlgrades (i.e., 3rd order) having eight terms and six terms,

each side: we now require one with four terms, each 31de It may be in-
teresting to derive this here.

We start with: 1+5=2+4
Adding 4 to each term, and carrying out the ‘‘switching’’ procedure, we
get: 1" +57+6°+87-27+47457+9%  forn=1, 2.
Cancelling the 5, which appears in both sides, we have:
17462 +8%=2"+4"+9" forn=1, 2.
Adding 7 to each term, ‘‘switching’’ and cancelling identical terms, this
leads to:  1n,gn4117+167=27+47+13%+15° forn=1, 2, 3.

This is one solution.of the Prouhet and Tarry problem for 3rd order
multigrades, there being four terms each side. Of course there are an
infinite number of other 3rd order solutions. It will be noticed that the
L.H.S. terms are evenly spaced in this case: another solution with even-
ly spaced terms is:

17 +147+27" +40™=5"+7" + 34" + 36" forn=1, 2, 3.

J. A. H. Hunter, whose valued help throughout this paper is grate-
fully acknowledged, suggests a general identity which provides all 3rd
order solutions of the Prouhet and Tarry problem subject to the L.H.S.
terms being evenly spaced:

07+ (x2+ %)™+ (2% + 2y*)™ + (3x2 + ZyH)"
=(2x2-8xy + y)* + (3y* —xy) "+ (3x* + xy)" + (x? + xy + 2y*)* for n=1, 2, 3.

In this identity, in order to derive terms in ascending order, we se-
lect any x and y subject to 13x2>19y, and 13x<21y. Having derived the
the terms, we can then add any desired number to each term and so ob-
tain the required four terms in each side: a zero term would not be ac-
ceptable in the final solution.

It may be mentioned here, although perhaps obvious, that all terms
in a multigrade may be divided by any common factor, or multiplied by
any number, without affecting its validity.
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The following identity gives a solution of the 3rd order Prouhet and
Tarry problem. With suitable choice of x, y, z (i.e., no term can equal
zero), this covers all possible cases in which the terms on one side are
not evenly spaced.

2%+ (y=2)"+ By +2z-2x)"+(2y + 3z - x)
=2y-x)"+(x-2)"+(y+22)"+(3y + 32 - 2x)" forn=1, 2, 3.

Readers who are interested in finding general solutions for higher
orders may feel tempted to face the somewhat laborious algebraical work
that is involved. Inherently, the process entails no principles other than
those already outlined.

Higher order solutions can also be found that are not fully general,
although giving infinite numbers of particular numerical solutions. For
example, I derived the following very simple semi-general solution for
5th order multigrades: so far as I know, it has not appeared in print
before:

0"+ (2a2+3a+3)" +(4a*~3a-2)" +(6a*+9a + 4)™ + (8a*+3a-1)" + (10a% + 6a + 2)"
=(g+2)"+(2a%-2a-2)"+(4a*+7a+3)" + (6a*~a~1)" +(8a*+8a + 4)" + (10a? + 5a)"
for n=1, 2, 3, 4, 5.

This, for example, leads to:
17497+ 187 +38" +47% + 55 =3 +5" + 22" + 34" + 51" + 53"
forn=1, 2, 3, 4, 5,
if we take a=2, and then add 1 to each term throughout.

This has been intended only as a brief introduction to a subject that
can provide endless fun for number enthusiasts. Quite apart from general
solutions, they may enjoy building up numerical multigrades of 5th, 6th,
and higher order by following the ‘‘switching’’ procedure that has been
outlined.

Mr. Cross was born in Nova Scotia, educated at Bridgewater High School and
Dalhousie University, Nova Scotia. Since 1949 he has lived in England, teaching in
a Birmingham school. Surprisingly, until recently mathematics was only a hobby — he
now teaches the subject — but he has contributed papers to the Brltlsh mathematical
journals Mathematical Gazette and Eureka.

SEA DISTANCE

Arising from a point raised by Mr. C. E. Branscome, of Lacoochee,
Florida, it may be interesting to note that the distance of the sea hori-
zon may be calculated quickly but approximately by the formula:

4vVh

= ——

3
h being height of eye in feet, and D the distance in miles.

SUBSCRIPTION RENEWALS? MAILING LABEL CODES?
See page 17.



ALPHAMETICS

) With this issue RMM has published a total of 66 different alphame-
tics and cryptarithms. The score by country: Canada - 39%; USA - 15%;
Engla_nd - 9; Denmark - 1; Unknown - 1. In the June 1962 issue of RMM
we tried to prod US puzzlists to catch up to Canada. The score, then,
was 75% from Canada and only 16% from the US. Now, it’s 60% and 24%,
respectively. Can we hope for more representation from other countries?

* % ok ok %

ANTS .
CANT Our ANTS, of course, are obviously very odd.
SCAN (Jonathan Khuner;, Berkeley, California)

* * * * *
In this unusual alphametic each separate column,

including its digit in the final total, adds up to a 0183 By
sum that is divisible by 8. For example, the sum of AM
E, A, A, and T is so divisible. _SAM

(George Propper; Bronx, New York) VOTE

* * % % %

Here we have the detailed calculation of the cube of a 4-digit
number, in two separate operations. In the first operation we derive
the square of that number: in the second we multiply the 4-digit
number by its square. The little x's indicate the positions of the
digits. What is the original 4-digit number?

XX XX
X XXX XXXXXXX
XXXX XXXX

XXXXX ‘ XXXX

XXXX XXXX
XXXX XXXX
XXXX XXXXX
XXXXXXX XXXXX

XXXXXXXXXXX

For this original and most intriguing example of the rare ‘‘no

digits’ form of puzzle, we are indebted to Willy Enggren of Copen-
hagen, Denmark.

* % k% % ¥

There can be no doubts as to what we have THIS
here. SURE
So what is this PRIME? I
(A. G. Bradbury; North Bay, Ontario) PRIME
* * * % *

FLAT

AS The wise ones ‘‘give up’’ in time, but you
X X X X won’t have to here!

xOLD (A. G. Bradbury; North Bay, Ontario)

ACTOR

~10—

by Ronald C. Read
Kingston, Jamaica

SOUP, FISH, AND FINITE GEOMETRIES

The other evening I invited my two mathematician friends, Professor
Lovelace and Professor Pennywell, to dine out with me. I have dined
with these two worthy gentlemen many times before, and I know their
ways; so it was no surprise to me when, with the arrival of the soup,
they produced pencils and paper, and began an earnest discussion in the
peculiar jargon that is the stock in trade of the professional mathemati-
cian. Usually when this happens I let them get on with it; but this time
[ was determined to get into the conversation somehow. After all, I was
paying for the meal!

“‘What are we discussing this evening?’’ I asked.

“Finite geometries,’’ replied Professor Pennywell.

““What are they?”’

““You mean to say you don’t know what finite geometries are?’’ said
Professor Lovelace. A modest man is Prof. Lovelace; he is always sur-
prised to discover that a piece of information which he has managed to
acquire should have eluded others. Prof. Pennywell was more helpful.

““It would be difficult to give a snap definition of them,’’ he said,
“‘put if you really want to know (I nodded to indicate that I did) I believe
1 can manage it. Let me see - I think I'll start by asking you a question
What is a line?”’

““A straight line?”’

“‘If you like.”’

“‘A straight line is the shortest distance between two points.”” I re-
cited. (I pride myself that I remember most of what I learned in High
School.)

“Bah! High School nonsense!’’ exclaimed Prof. Lovelace, in be-
tween two mouthfuls of soup. I was deflated.

“You’re thinking of Euclid’s definition,”’ Prof. Pennywell went on,
““Not a very satisfactory one even for his sort of geometry. But I think I
put the question badly; what I was getting at was this: a line is a col-
lection, or set of points.”’

I thought this over for a moment; something didn’t seem quite right.
Then I put my finger on the trouble.

“That can’t be the whole story,’”’ I said, ‘‘a line can’t be just any
set of points. Otherwise how would you distinguish a line from, say, a
circle, which presumably is also a set of points?”’

“‘Quite right,”’ replied Prof. Pennywell, ‘‘lines can’t be just any old
sets of points. They have to satisfy certain conditions or axioms, as
they are called. But your soup is getting cold,”” he added, *‘finish it
up, and we’ll go a stage further.”’

I finished my soup, and we ordered the fish. Prof. Pennywell con-
tinued his explanation.

“The conditions that the lines have to satisfy are very simple. The
first is that if you pick on any two points then there is exactly one line
(a set of points, remember) which contains both of them.””

“Or ‘joins them’ as Euclid put it in his quaint way,’
Prof. Lovelace.

“That seems straightforward enough,’”’ I said, ‘‘Like when you join
two points on a piece of paper by a ruled line. The two points are then

11—

’ interjected
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qut two of the infinite number of points that make up the line. I can
picture that.”’

““Careful,”” warned Prof. Lovelace, “‘pictures are often misleading.”

“The oth(_ar condition,”” went on Prof. Pennywell, ‘‘is that if you
take any two lines, they will ‘intersect’, or ‘meet’, in exactly one point.
'11‘_hat s to say there will be exactly one point which belongs to both the

ines.

“I can picture that, too - I think. But just a moment,”” I said,
‘‘aren’t you making the assumption that the lines aren’t parallel?’’ (Prof.
Lovelace is always saying how important it is to watch out for hidden
assumptions.)

‘‘Ah, you’re still thinking about Euclid’s geometry,”’ came the reply,
‘‘But the geometry we are talking about is a rather different kind, called
‘projective geometry’.”’

I sighed. If there is one thing about mathematics that my friendship
with the Professors has taught me it is that you make up the rules as
you go along. And alter them, too, if you feel like it!

““Well, what is projective geometry?’’ I asked.

“I’ve been telling you,” said Prof. Pennywell, “in fact, you have
the whole picture now, more or less. You have a collection of points,
and certain sets of these points. These sets you call lines. Now if
these lines satisfy the two axioms - let’s write them down:

Axiom 1: Given any two points, there is exactly one line
containing both of them, and

Axiom 2: Given any two lines, there is exactly one point
belonging to both of them.

if, as I was saying, the points and lines satisfy these two axioms, then
the whole set-up of points and lines is called a projective geometry. To
be strictly accurate I should say a plane projective geometry.”’

‘I notice that you say ‘a projective geometry’. Does that mean that
there are a lot of them?”’

] “_Yes, indeed. There are many ways in which the axioms can be
satisfied, and these correspond to different projective geometries. Ah!
Here comes the fish.”

“I think I get the idea.”” I said, after some thought. ‘‘There is just
one question I'd like to ask, though I suspect that I know the answer
already. You’ve defined lines as sets of points satisfying certain con-
ditions or axioms, but what are points?’’

f‘I‘f you suspect that you know the answer already, why not air your
suspicions first?’’ mumbled Prof. Lovelace through a mouthful of fish.

““Well,” I said, ‘‘it seems to me that it doesn’t matter much what a
point is. I tend to think of a point as being like a pencil dot on a piece
of paper, but it might just as well be - well, anything at all.”

‘“That’s exactly it.”’ exclaimed Prof. Pennywell, with encouraging
enthusiasm. ‘‘You can think of points in whatever way you like. Any
collection of things of any kind will serve as the collection of points,
provided it can be formed into sets (lines) satisfying the axioms. In
mathematical jargon, points are ‘undefined’; they are not given any pro-
perties because they don’t need any. None of this ‘a-point-has-position-
but-no-magnitude’ sort of business. All that matters is the structure that
we get when the collection is sorted out into sets which satisfy the
axioms.”’
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“I’'m beginning to get the hang of it,” 1 said, ‘‘But we started off
to define ‘finite geometries’. Where does the finite part come in?”’

“Well now,’”” Prof. Pennywell went on, ‘‘if you picture points as
dots on a piece of paper, and lines as the sort of things that you draw
with a pencil and a ruler (as you seem to do), then you are liable to
think that there must necessarily be an infinite number of points on each
line, and therefore an infinite number of points altogether. But this need
not be so. It is quite possible to have a finite collection of points,
sorted out into sets (lines) satisfying the required conditions. Then we
say we have a finite geometry.”’

‘““Can you give me an example?’’

‘““‘Certainly. The simplest example is that in which there are three
points. Let’s call them A, B, and C.”

‘““Very original,”’ gibed Prof. Lovelace.

““There are three lines,”’ went on
Prof. Pennywell, ignoring the interrup- A
tion, ‘‘one containing the two points A
and B, another the points B and C, and
the other the points C and A. This ge-
ometry can be represented diagrammat-
ically - and I do mean diagrammatical- & 8
ly - by this figure which I hope is more
or less self-explanatory.’’

““I can see that the two axioms are satisfied,’’ I said, after a pause
during which the fish plates were cleared, and we ordered the next
course, ‘‘but it doesn’t look as though that geometry would be very -
well, very interesting.”’

““It isn’t,”’ said Prof. Pennywell,
““in fact it is not usually considered
worthy of being called a geometry at
all. So let’s take the next example.
In this one there are 7 points and 7
lines, with 3 points on each line and
3 lines through each point. Here is
its diagram.”’
““What’s the wiggly curve going round the whole thing for?’’I asked.

‘“That represents one of the lines of the geometry,’”’ said Prof. Pen-
nywell. ‘‘You see, in this geometry each line contains exactly 3 points;
A, F, and B, for example, make up one line. These points are therefore
‘collinear’. In the diagram I have tried to make these sets of points look
as though they were collinear, and have drawn a line (that is to say, a
pencil line) through them to emphasize their collinearity. However, there
is one set of points which make up a line but which cannot be made to
look collinear - in our case the points D, E, and F'. The wiggly curve is
meant to indicate that these 3 points do, nevertheless, make up a line of
the geometry.”’

““I think I get it - but it does rather spoil the diagram.”’

‘“Can’t be helped. But perhaps it would be easier if we dispensed
with the diagram altogether. Suppose we let the letters A, B, C, D, E,
F, and G represent the points of this geometry.”

‘“‘Since the points are undefined,’’ interrupted Prof. Lovelace, paus-
ing for a moment from his battle with a steak that was not as tender as it
might have been,‘“why not say that they are the points of the geometry.
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‘All right then,” agreed Prof. Pennywell, “Let A, B, C, D, E, F,
and G be the points of the geometry. There will be 7 lines, each a set
of 3 points, and they are as follows:

AFB, BDC, CEA, AGD, BGE, CGF, DEF.
It is easy to check that the axioms are satisfied - there is exactly one
set containing two given letters (points), and exactly one letter common
to any two given sets. So we have a geometry.”’ )

““That’s most interesting. Can you have a geometry with any num-
ber of points?’’

‘th no, not at all. The possible numbers are fairly limited. You can
classify these geometries by the number of points belonging to each line.
Suppose that there are n +1 points to each line..."

“Why n+1? Why not n?*’ I asked.

““No reason really. It’s a little more convenient for the mathemati-
cal analysis, that’s all. Well, if there are n+1 points to every line, then
there will be n+1 lines through each point; that is to say, each point
will belong to n+1 of the sets that are the lines of the geometry.”’

““Is that obvious?’’

“Not quite, but it is very easy to prove. Try it when you get home.
Now a geometry with n+1 points to each line will contain n{n+1)+1
points, ard the same number of lines. That isn’t difficult to prove either
- you can try that as well.””

‘At least it checks with your two examples,’”’ I said. ““When n=1
we have 1-2+1=3 points; with n=2 there are 2:3+1=7 points, as in
your examples. So I suppose that if n=3 there would be...-by the way,
can n take any value?”’

*“No, it can’t,’” replied Prof. Pennywell, ‘“‘and that is where the sub-
ject begins to become interesting. Not a great deal is known about the
possible values that n can take. One general result, proved some time
ago, is that you can have a geometry with n+1 points to a line when n
is a prime number, or a power of a prime number. That is not easy to
prove, by the way.”’

““Then I’ll take your word for it. Anyhow, the case n=3 seems to
work, since 3 is a prime.”’

“Correct.”’

‘‘And the geometry will have 3-4+1 or 13 points and 13 lines.”’

““‘Quite right.”’

‘‘After that comes 4 - a power of a prime; and then 5, a prime. So
those two are OK. How about n=6? That is not the power of a prime.
Is there a geometry with 43 points and 43 lines??’

““No; 6 is the first value of n not covered by the general result. In
point of fact it has been proved that there is no projective geometry for
n=6. In other words,-it is impossible to take 43 objects, and pick out
43 sets of 7 objects each in such a way that the axioms are satisfied.”’

““How curious! Again, I’ll take your word for it. What is the next
value of n not covered? If I am right 7, 8, and 9 all come under the gen-
eral result, so it will be n=10. What happens there?”’

““The answer to that is that nobody knows,”’ replied Prof. Penny-
well. ““No one has managed to produce a geometry with 11 points on
each line, but on the other hand, no one has been able to prove that it
can’t be done. That is what Lovelost over there and myself were talking
about earlier on. He thinks he has found a proof that a geometry with
n=10 is impossible, like n=6. But I'm still skeptical.”’
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“You always are,”’ grumbled Prof. Lovelace, a little riled at the
wanton mutilation of his surname.

““On the contrary,’’ replied Prof. Pennywell, ‘I am readily convinced
by a clearly stated argument. But your exposition...”’

‘“...was crystal clear, as always.”

““Hogwash! Take this Galois field GF* that you introduce near the
beginning of the proof. It’s not at all clear how this has any relevance

whatever to. .. N

The Professors were back to their arguing, and back in the realm of
higher mathematics where I could not follow them. I retired graciously,
and during the rest of the meal (which, incidentally, finished with the
finest Coupe Jacques that I have ever tasted) I thought over what Prof.
Pennywell had been telling me. I had an idea that it held the makings of
a puzzle. Not a very mathematical puzzle - indeed, hardly mathematical
at all, and certainly the sort of thing that Prof. Lovelace would snort at
in disgust; but possibly an interesting puzzle for all that.

Late that evening I tried my hand at the two proofs that Prof. Penny-
well had mentioned, and found (to my surprise) that they were fairly easy.
The first result was that if, in a geometry, there were n+ 1 points on each
line, then each point will belong to n+1 lines. My proof went as follows:

Let P be a point. Take a line which doesn’t contain P. Call it L.
This line L will contain n+1 points, say A,, A,, A;,.., A,,;. By the
first axiom we have lines PA;, PA,, PA;, and so on -n+1 of them- all
through P. What is more, all these lines are different; for if two of them,
say PA; and PA;, were the same line, then this line would have two
points (A; and Ag) in common with L, whereas axiom 2 allows them only
one point in common.

This gives us n+1 lines through P, but we ought to check that there
can’t be any others. This is easy. If there were another line through P
it would have a point in common with L; but we have already accounted
for all the points on L.

Since P was supposed to be any point, we have proved what we set
out to prove.

I showed my proof to Prof. Pennywell. He grinned and said, *‘Strict-
ly speaking this isn’t correct. You have overlooked the possibility that
all the points might lie on the same line. In which case you would not
be able to choose a line L which does not contain P.”’

““But can this happen?’’ I asked, ‘‘If there is only one line in the
geometry, and all the points lie on it, surely the axioms could not be
satisfied. At least, not the second.” I added hastily, realizing that
there would be no difficulty satisfying the first axiom, ‘‘It specifically
mentions fwo lines.”’

“‘Yes, it might seem like that,’’ replied the Professor, ‘‘but in fact
the second axiom would be satisfied in a peculiar, empty sort of way.
Look at it like this. ‘The only way in which the second axiom could be
violated would be if there were two lines which had more than one point
in common. And this couldn’t happen, for the simple reason that we
couldn’t even get the two lines to start off with!”’

“It sounds a bit of a quibble to me,”’ I said, ‘‘But if what you say
is correct then the results you quoted are not, in fact, true.”’

““Quite so; and the fault is all mine.’’ the Professor admitted, ¢‘I
should have added an extra condition - another axiom, really - to the
effect that the geometry has at least two points and at least two lines.
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Then it is not difficult to see that you can indeed have a line L not con-
taining the given point P (you’d better check that some time) and your
proof is quite valid.”’

““Thank goodness for that,”’ I said, ‘“‘Now will you look at my other
proof. You asked me to prove that in a geometry with- n+1 points on
each line there are n(n+1)+1 points altogether.”’

Prof. Pennywell looked quickly through my proof, and OK’d it. It
went as follows:

Through any point P there are n+1 lines, each of which contains n

[t)ltl)int% other than P. Hence these lines contain r(n+1) points other
an P.

The geometry therefore contains at least n{n+1)+1 points - count-
ing in P as well. Can there be any others? No; for if A is any point
other than P, there is a line containing P and A (first axiom). Hence A,
lying as it does on a line through P, will have been counted by the pro-

cedure just given.

Then I started thinking about my puzzle. Prof. Pennywell had cho-
sen the letters A, B, C, D, E, F, and G for the points of his 7-point
geometry. I began wondering whether it would be possible to pick some
other 7 letters of the alphabet in such a way that the 7 lines of the ge~-
ometry would spell out honest-to-goodness, three-letter English words.
After a bit of experimenting I came up with the following:

DRY, ORE, BOY, ADO, BAR, AYE, BED.

I checked that the two axioms were satisfied. They were. Any pair
of words has exactly one letter in common, and there is only one word
containing any given pair of letters.

So far, so good. But was the same thing possible, I wondered, with
the next geometry, the one with 13 points and 13 lines, and with 4 points
on every line? It was a question of finding 13 letters from which could
be made 13 4-letter words, in such a way that there was just one word
containing any two given letters, and that any two of the words would
have exactly one letter in common.

This proved to be a much more difficult task, and time passed
quickly as I tried combination after combination. At length, at three in
the morning, I gave up. I hadn’t solved the problem, but I had managed
to find the following near solution:

AIRY, PUNY, PITS, LAND, APSE, LION, SLUR,
RENT, DROP, AUTO, DIEU, OYES, TYLD.

_The last ‘word’ is one fly in the ointment* It looks vaguely Scandi-

navian, or possibly Welsh, but is certainly not English. The two words
before it are a bit suspect, too, but they will do in a pinch. This was
the nearest that I could get to a solution. Perhaps some RMM readers
can do better. Why not try?
* Editor’'s Comments: There are other ‘flies’. For example, OYES and LAND have no
common letter (also LAND-PITS and APSE-TYLD), LION and LAND both have LN in
common (also APSE-PITS with PS in common and APSE-OYES with ES in common)~ a
total of six additional ‘flies’ in the ointment. However, a check shows that each letter
appears in exactly four words - as should be expected.

The Editor, working from Mr. Read’s near solution, submits the following list
which has no flaws as far as the two axioms are concerned:

AIRY, PUNY, LAND, PATS, DYES, SLUR, SINO,

DROP, TERN, PILE, AEOQU, DITU, LOTY.
However, the last three ‘words’ constitute three flies in the ointment! A different
choice of letters appears necessary. (J. S. M.)

SUBSCRIPTION RENEWALS - MAILING LABEL CODES

Renewal notices are generally sent out to subscribers whose sub-
scriptions are terminating about a week after each issue is mailed out.
We urge all to send in their renewals soon before copies of RMM are
depleted - thereby forming a gap in your file of RMMs.

If you would like to know when your subscription ends look at your
mailing label. The last three digits indicate the date of the last issue
of your current subscription. The last two of these digits indicate the
year (63=1963, 64 =1964, etc.), the first of the three digits indicate the
issue of that year (1 =February, 2 =April, 3=June, 4=August, 5=0cto-
ber, 6 =December). If your label reads 163, then this issue (FEBRUARY
1963) is the last you are due to receive - send in your renewal notice
and payment immediately ($3.25 per year). If your label reads 263 or
363 you will receive the Combined April-June 1963 issue as the last of
your current subscription. Renew now so you won’t forget later. A code
reading 463, 563, 663 or later gives you until the August 1963, October
1963, December 1963 or later issue to renew - but don’t keep putting it
off.

The first four digits of the mailing label code indicates the mailing
zone and state: 1805 means zone 8, California; 1436 means zone 4, New
Hampshire. Foreign countries are also indicated by the first four digits:
9104 means Canada, Province of Manitoba; 5400 means India; 3753 means
England, Yorkshire county.

The next four digits indicate the city within the state (or country):
1805 4530 means Los Angeles, California; 3732 5000 means London,
England; 8200 5000 means Moscow, Russia (yes, RMM goes there, too).

RMM goes to all 50 of the United States, most of the US territories,
most of the Canadian provinces, and (as of this mailing) to 32 other
countries.

The next six digits on the mailing label indicate the individual
customer code number. Each RMM subscriber has a permanent and unique
number: 181120 is Alan L. Brown; 412640 is J. A. H. Hunter; 530080 is
the Library of New Mexico State University. This customer code number,
alone, would enable us to locate the subscription file card of an RMM
subscriber. Rarely, these ‘permanent’ numbers will change: a Miss Mary
A. Brown (182840) becoming a Mrs. Rasputen Q. Prezbylovich (737800);
or a subscriber giving only his initials at first (J. A. Jones - 434840)
and, later, his full name (Jacques A. Jones - 435190). Occasionally,
a subscriber will be given a wrong number and this would be corrected
immediately upon discovery.

CATCHING UP - GETTING BACK ON PUBLICATION SCHEDULE

It is hardly a secret to RMM readers that RMM has fallen behind in
its publication schedule! There have been a number of reasons which
have interfered with normal schedules - all of these reasons seem to
have delayed, rather than hastened, publication.

To get caught up one issue at a time might take until the end of
the year. Therefore, we are going to publish the APRIL 1963 and JUNE
1963 issues together in a single 96-page issue. There will be quite a
few more articles (see page 2 of this issue for a brief table of contents
of the Combined Issue) and some of the regular features and departments
will be increased in length.

With just reasonable luck we hope to be back on schedule with the
AUGUST 1963 and/or OCTOBER 1963 issues.




THE ELUSIVE NUMBER PI by Emil Fridstein Vaage

New York, New York

The number 7 (pi), which appears so fre i i

] ] ), quently in fo 1

physics and engineering, has never been evaluatedycompll;enigl;.s lflksigi:&
history of tht_a efforts has been given in RMM: # Has Been Calculated to
100,265 Decimal Places, RMM No. 8, April 1962, pages 20-21.

One way to estimate the numerical value of 7 is b
tinued fractions, said go.have begun with Bombelli in 13'5%?anls‘ac;£rcgg-
thg Japanese mathemapclan Takebe Kemmei (1722) showed that by usin;g
this method the following approximations could be obtained:

7, =34=3.14 ...

7, =34 -3.1415 . . .

my =345 =3.141592 . . .

7, =338 - 3.141592653 . . .

In the above expressions, only the correct number of decimal digits

have been given. In order to obtain a measure of the efficiency of these

: 1 15 16 46 : :
fractions, 3, &%, &%, and #22, let us define their Goodness Factor as the

ratio of the correct number of decimal digits obtained to th
digits in the denominator of the fraction. Thus: © the mumber of
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=1.8

In.my spare moments 1 have enjoyed myself trying to find a better
approximation with more correct decimal digits and with a better good-
ness factor than 2.

ES

The next fe_w approximations obtained from the continued fraction
metho'd resulted in more correct digits for the number », but the goodnes's
factor of these expressions did not exceed the value of 2. It was the

first_after the 20th approximation was evaluated that a better result was
obtained:

Tyo= ermueiiS — 3.141592653589793238462 . . .
G, =%=2.10
The fraction given in m,, gives » correct to 21 decimal places, with

a goodnes_s factor equal to 2.10. The numerator and the denominator in
this fraction can be factored as follows:

948881364 = 2x2x3Ix661x119627
6701487259 =101x4457x14887

Since all of these factors are prime numbers, and none are common to
both numerator and denominator, the fraction in #,, cannot be reduced.

After further search, a fraction with a better goodness factor has
not been found. Does a better one exist?
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SIR ISAAC NEWTON, PROBLEMIST by Maxey Brooke

Sweeny, Texas

If the experts were all asked to name the greatest mathematician of
all time, Newton’s name would probably appear most often. The co-
author of the calculus is usually pictured as a dour and humorless man.

No other mathematician has had so much biographical material writ-
ten about him. For that reason, only a brief outline of his life will be
given.

Newton was born at Woolsthrope, Lincolnshire, December 25, 1642.
He was taken out of school at the age of 15 to work on a farm, but his
conspicuous lack of ability for this work earned him the right to go back
to school. He entered Trinity College, Cambridge, in 1661, graduated in
1665, and took his M.A. in 1668. He was made Lucasian Professor of
Mathematics at Cambridge the following year and, in 1671, was elected
a Fellow of the Royal Society. He sat in the convention parliament of
1689-1690, was made Master of the Mint in 1699, took his seat in parlia-
ment for Cambridge University in 1701, and was knighted in 1705.

In addition to developing the calculus, he discovered the principles
of light refraction and invented the reflecting telescope. His law of
gravitation is said to have been the greatest scientific contribution of
any single man. Most of his life’s work was summarized in his classic
Philosophia Naturalis Principia Mathematica. He died at Kensington,
March 20, 1727.

Against this imposing array of accomplishments, his contributions
to recreational mathematics seem slight. Indeed they are hardly ever
mentioned by his biographers. Here, then, is a new facet in a great
man’s life and works; a puzzle, a riddle, and a problem.

The puzzle of how to plant nine trees in ten rows of three each has
already been discussed in this magazine (RMM No. 6, December 1961,
page 51).

The riddle is a bit of doggerel:

Four persons sat down at a table to play,

They played all that night and part of next day.

It must be observed that when they were seated,

Nobody played with them and nobody betted;

When they rose from that place, each was winner a guinea.
Now tell me this riddly, and prove you’re no ninny.

And the problem:

Three pastures are covered with grass of equal density that grows
at an even rate. The first pasture has an area of 33 acres, the second
has an area of 100 acres, and the third 240 acres. On the first pasture
twelve oxen can feed for four weeks and on the second twenty-one oxen
can feed for nine weeks. How many oxen can feed on the third pasture
for eighteen weeks?
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LETTERS TO TRE EDITOR

Dear Mr. Madachy:

H. E. Dudeney in his Amusements in Mathematics declares that he
had a solution of the problem of 13 Knights who wish to sit around a
table on 66 occasions so that no Knight has the same neighbors more
than once. Dudeney appears never to have disclosed his solution.

Can any RMM readers say how it may be done, and how the problem
is solved for any number of Knights?

Dublin, Ireland Victor Meally

Dear Sir:

I would very much like to obtain copies of the JUNE 1961 and the
FEBRUARY 1962 issues of RMM. If any readers would like to sell
their copies, please state the price to me at the address below. I am
also interested in exchanging books on mathematical recreations.

Van Merlenstraat 98 C. C. Verbeek
The Hague, Holland

Editor’s Note: An airmail postcard or postal aerogramme to Holland
costs 11¢.

Dear Sir:

In the June 1962 issue of RMM (page 44), Charles W. Trigg quoted
the story of Hardy’s ride in taxi number 1729 while on his way to visit
Ramanujan who was ill in Putney. Ramanujan pointed out that 1729
was the smallest number giving the sum of two cubes in two different
ways. Here are some observations on that number to supplement those
given by Professor Trigg.

1729,,=2331, =1332,, (i.e., bases 10, 9, and 11)
1729,,=1001,, = 12001, =123001,
1729 = 62+18%2+37*= 82+122+39%= 82+24%+33?
=102 +277+307=12%+ 172+ 36%= 182+ 262 + 272
Representations as the sums of 4 cubes, and of 6 cubes, were
given. 1729 is also the sum of 5 cubes, 9 cubes, and 11 cubes:

1729=12+3%+3*+ 7 +11°
=13+2°+33+4%+5%46%°+6°+7°+9°
=18+ 13 +2%+3%+4%+5%+6°+ 63 + 62+ 73 + 83

When Hardy asked Ramanujan if he knew any corresponding cases
for fourth powers, Ramanujan replied that he could think of no obvious
example but that the smallest such number must be very large.

The smallest such number certainly seems to be large! Here are
three examples, the first being the smallest solution that is known:

—920~
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6353186567= 59+ 158*= 133*+ 134*=41-113-241-569
2094447251857 = T76*+1203*~ 653*+1176*
155974778565937 = 1623* + 3494* = 2338* + 3351*
Finally, I would like to comment on Professor Trigg’s remark that
1729 can be expressed as the sum of selected terms of the Fibonacci

series. In fact it is not difficult to show 'that every number has this
property, by the following argument.

If all integers up to (F,— 1) can be expressed using the first (n—1)
terms, then all integers up to (2F,—1) can be €xpressed by merely add-
ing F, to the given expressions. Now, for n>5, we have 2F,—1>F,_,,.

Since every integer up to F =5 is expressible, it follows that all those
up to F, and then similarly up to F,, and so on, are expressible.

It may be worth noting that the same applies for representation
using the powers of 2, with the refinement that each such expression
is unique. These unique expressions are the binary-scale numbers!

Knottingley, Yorks, England Alan Sutcliffe

Editorial Note: Arising from this, J. A. H. Hunter comments as follows:

2094447251857 =17-2129-6481-8929
155974778565937 = 313-3217-5521-28057

Alan Sutcliffe’s fourth-power examples stem from the solution de-
veloped by Gérardin from Euler’s work on the problem. This, the only
known solution, gives an infinite number of examples although not nec-
essarily all possible examples:

IfFN=X*+Y*=W*+2Z",

X=ala®+ a*b*-2a*b*+3ab® +b°),
Y =bla®-3a°b -2a*b*+ a?b*+b%),
W=ala®+ a*b®-2a%b*-3ab® + b)),
Z =bla®+3a®b -2a*b*+ a?b*+ b°).

This seems a good opportunity to announce the complete factoriza-
tion of the complicated algebraical expression for that equal sum of two
pairs of fourth powers, recently discovered by myself. So far as we
know, this is new.

N=(a*+6a*b*+b*}a®-a*b* + b*)a® - 4a°b* + 8a*b* - 4a?b® + b?)
(a® +2a°b*+ 11a*b* + 2a?b® + b®)

e.g., 173324 +529*=17220*+6673*=353-51137-65281-76577

=90,239,171,293,339,457
which would defy most attempts at factorization!
The foregoing leads to thoughts on similar treatment for equal sums

of pairs of cubes. Ramanujan evolved the semi-general solution for the
values of pairs of numbers: ‘

An infinitude of solutions for N=X*+Y*=W?+Z? is given by:

X =5b%*+bab - 3a? W =4a?+ 4ab + 6b>
Y =452+ 4ab + 6a? Z =5a*+ 5ab ~ 3b*

where, approximately, 25b2=10a2>4b.
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I have established the factorization of N for all such cases as:
N=63(a’-ab + b*)a®+ 3ab + 3b*)(3a*+ 3ab + b?). So far as we know, this
is also new.

Additional Editorial Note (J. S. M.): Interested readers may consult a
complete list of 101 solutions to N=X?*+Y*=W3+ Z* (for N <5,000,000)
compiled by C. E. Britton and published in Scripta Mathematica, Vol.
XXV, No. 2 (July 1960), pages 165-166.

* * * * *

Dear Mr. Madachy:

I am interested in any biographical data on Edouard Lucas. Can
RMM readers supply any references?

912 0ld Ocean Avenue

Sweeny, Texas Maxey Brooke

Dear Mr. Madachy:

In the October 1962 issue of RMM (pages 9-10) Richard K. Allen
presented an article entitled 4,000 Years of Egster. It reminded me of
a formula developed by Gauss to determine the day of Easter Sunday.

Perhaps RMM readers would be interested in the formula as an
amazing example of the reduction of a very complicated process to a
simple arithmetic form.

For the years 1900 to 2099, x=24, y=5, N=calendar year. a, b,
and c are remainders of N/19, N/4, N/7 respectively. d is the remain-
der of (19¢+x)/30; e is the remainder of (2b+4c +6d+y)/7. Easter
Sunday is d +e +22 for March and d+e -9 for April.

The formula breaks down if the result is April 25 or April 26. If
the result is April 25 the formula does not apply without some extensive
recalculations, the details of which are unknown to me. If the result is
April 26, Easter Sunday is April 19.

Toronto, Ontario E. D. Gibb

* * * * %

Dear Sir:

The following are some symbols which I have found quite useful in
high school mathematics classes. Perhaps other RMM readers have used
similar symbols in their own classes.

% means finite or not infinite
+C{ means one to one correspondence
= means is equal to the absolute value of
——~ means increasing T  means decreasing
= means identically equal to in the sense of an equation which
is true for all values of the unknown.

/A means perpendicular bisector of. This is a very frequent and
cumbersome expression in geometry.

San Mateo, California Lloyd A. Walker

BOOK REVIEWS Edited by Dmitri E. Thoro
San Jose State College

Mathematics: The Man-made Universe. By Sherman K. Stein. W. H.
Freeman and Co., San Francisco, 1963, xiii + 316 pages, $6.50.

Rarely can a book be recommended to both the amateur and ad-
vanced mathematician - but Stein’s unique blending of scholarship, lucid
style, and wit should be a joy to the most lethargic reader (or sophisti-
cated teacher).

RMM readers will be delighted with the rich assortment of recrea-
tional mathematics topics: The Highway Inspector and the Salesman;
Magic Squares; Map Coloring; The Fifteen Puzzle; Tiling; and especially
the nearly two dozen unsolved problems.

In the words of the author, ‘‘“This book grew out of a college course
designed primarily to give students in many fields an appreciation of
the beauty, extent, and vitality of mathematics.’”” Since many chapters
use only grammar school arithmetic, this is an excellent source of en-
richment material for high school students.

Some areas represented are number theory, topology, set theory,
geometry, and combinatorial analysis. Normally routine excursions take
on the spirit of an exciting adventure. The reader is encouraged to make
numerous conjectures and generalizations.

Many of the problems are ingenious. You are invited to use Diri-
chlet’s ‘‘pigeonhole principle’’ (if there are k+1 pigeons in k holes, at
least one pigeonhole has two or more pigeons) to prove such results as
““If 17 pins are stuck into a piece of cardboard in the form of an equi-
lateral triangle of side 2, then at least two of the pins are within a dis-
tance % of each other’’; or, ““If p>2 is a prime, then there exists a pos-
itive integer A such that 24—1 is divisible by p.”’

Twenty-five pages on map coloring constitute one of the best ele-
mentary introductions to a subject investigated by Moebius, de Morgan,
Cayley, Descartes, and Euler - to name a few. A similar statement
would be valid for the chapter on ‘‘Memory Wheels’’.

Professor Stein’s originality is often reflected in the seventeen
chapters and three appendices. In addition, I feel that some RMM read-
ers would be willing to buy Mathematics: The Man-made Universe for
the 118 references alone! D.E. T.

The Fibonacci Quarterly Journal. $4.00 per year.

The first issue of this newcomer to the ranks of mathematical peri-
odicals appeared in February 1963. It is the official journal of The
Fibonacci Association which has emerged from the chrysalis of the Pro-
Fibonacci Group formed by a core of enthusiasts at San Jose State
College, California. This publication is devoted to the study of integers
with special properties, with particular emphasis upon Fibonacci and
other recurrent sequences.

—923—
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The avowed purpose of the quarterly is to encourage mathematics
teachers to engage in research and to offer them publication opportunity,
to provide ideas which may be adapted to classroom projects, and to
present material suitable for high school study.

The dual objective of research and education is well exemplified
in the first 75-page number. Approximately half of the issue is devoted
to research papers, which show that the activity is not purely recrea-
tional. Part I is pointed toward the beginner, the amateur, and the high
school student. The material in it is of an expository nature, clearly
written, and should encourage the mathematical hobbyist to delve fur-
ther into the mysteries of arithmetic. There is an advanced problem
section and there is also an elementary problem section. HEach section
offers a number of well-chosen, interesting problems.

The magazine is printed by offset from typewritten copy, in a type-
size which is easily read. The organization is good, despite the fact
that headings and sub-headings do not stand out as clearly as they
would if a larger variety of type faces were available. It would be well
to emphasize the division into two parts more clearly in the table of
contents.

The editorial board and the list of those cooperating present a nice
balance of professional mathematicians, problem addicts, and mathema-
tical recreationists. The well of imagination, ability and enthusiasm
represented here coupled with their sincere invitation for active reader
participation indicates that the Quarterly will have a long and interest-
ing life.

If anyone finds it difficult to conceive of a periodical devoted sole-
ly to Fibonacci and related numbers, let him satisfy his curiosity and
discharge his skepticism with a trial subscription. Send it to Brother
U. Alfred, St. Mary’s College, Moraga, California. It will be a good

investment. Charles W. Trigg
Los Angeles City College

Pillow Problems and a Tangled Tale. By Lewis Carroll. Dover Publi-
cations, Inc., New York, 1958, xx+ 152 pages, $1.50 (paper).

In Pillow Problems and a Tangled Tale, the creator of the Mad
Hatter, the Red Queen, the March Hare and the other assorted inhabi-
tants of the World of Alice offers a panacea for all those afflicted with
insomnia or weighted down with the unsolvable problems of the mundane
world. His solution to the beforementioned problems does not involve
the prescription of tranquilizers, sleeping pills or the counting of sheep
but rather an escape from it all by an excursion into the world of mathe-
matics. Becoming occupied in an absorbing mathematical problem will
immediately push all else to the background of one’s consciousness
contends Carroll and it is his opinion that ‘‘an hour of calculation is
much better . .. than half-an-hour of worry.”’

The book is divided into two sections. The first presents seventy-
two ‘‘pillow problems’’, all of them solved by Mr. Carroll either ‘‘in the
head while lying awake at night’’ or ‘‘while taking a solitary walk’’.
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The bulk of these problems may be classified as algebraic, geometric
of two dimensions or trigonometric of two dimensions. The very strength
of this book lies in the fact that the problems are challenging and imag-
inative and yet do not require an extensive mathematical background in
order to comprehend the problems or solve them successfully. It is my
opinion that those problems concerned with the geometry of the plane
are the most interesting but certainly this is a purely subjective matter.
A good problem is not terminal in that it leads one beyond the solution
by suggesting further problems and leads the solver to generalize and
determine those conditions under which a given problem has a solution.
Such are the problems posed by Lewis Carroll.

A good many of Carroll’s geometrical problems involve the possibi-
lity of the inscribing of one figure inside of another as in the following:
“In a given triangle place a hexagon having its opposite sides equal
and parallel and three of them lying along the sides of the triangle and
such that its diagonals intersect in a given point’’. Certainly by draw-
ing a proper diagram and applying a strong intuitive approach omne is
readily able to see that a solution is possible yet the heart of the prob-
lem rests in proving the opposite sides of the hexagon are in fact paral-
lel and equal. Possibly still more provocative is the question raised by
the selection of the given point. Can the point at which the diagonals
of the hexagon concur be selected randomly at any location in the inner
region of the triangle? If not, what restrictions must be placed on the
selection of this point sothat the hexagon can be successfully inscribed
within the triangle? What happens to the hexagon as this point in ques-
tion is moved toward the base or the apex of the triangle? Are there
degenerate cases, i.e., where the hexagon becomes a parallelogram, a
line or just a point? In fact, the point must be selected from inside a
certain triangular area within the original triangle if the hexagon is to
to be properly inscribed. The nature of this very special interior tri-
angle is also a possible area of further exploration.

As previously implied there are many problems to satisfy the num-—
ber theorist, the algebra buff and those persons who, like myself, enjoy
dabbling in the field of probability. There are several fine problems
involving the random selection of objects under varying conditions, the
most interesting and one of which Carroll himself was most-proud is the
following: ‘‘A bag contains two counters, as to which nothing is known
except that each is either black or white. Ascertain their colors without
taking them out of the bag.”’* Carroll’s solution is ingenious and the
problem itself is properly classified under transcendental probabilities.

The second half of the book, A Tangled Tale, is a delightful story
in the traditional Carroll style which mixes good sense with nonsense.
The tale is constructed in ten knots rather than chapters, each of which
contains a mathematical problem which must be abstracted from its
strange surroundings and put into some form which is easily understood
and attacked. It tests one on two accounts, the ability to abstract from
a verbiage as foreign as Carrollese and ingenuity in eventual solution.
The knots can be resolved to algebraic and geometric problems. As
Carroll states in his prefacde, his intent in the writing of the tale was,
‘““for amusement and possible edification’® and he succeeds on both
scores.

*See Mad Mathematics by C. Stanley Ogilvy in RMM No. 9, June 1962,
page 22.
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In conclusion I should like to say that one need not be an insom-
niac nor a worry wart in order to enjoy Mr. Carroll’s book. Nor, may I
add, need one be confined to the pillow or committed to the solution of
these problems without pencil or paper. Solutions are shown. for all
problems including the knots of the Tangled Tale, some of which may
be considerably shortened by a clever reader. I find the symbolism and
notation used in solution of these problems to be a bit archaic but this
shortcoming is easily hurdled. Rather than be committed to an abyss of
arithmetical agony, if a solution is not forthcoming the reader ngaed _on!y
refer to the rear of the book - hence one who is not an insomniac is in

no danger of becoming one for want of a solution. Robert H. Gurland

New York University

BOOKS
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NUMBERS, NUMBERS, NUMBERS

NUMBERS WITH DISTINCT DIGITS OF THE FORM (M—1)M(M+1)
by Charles W, Trigg
Los Angeles City College

There are forty-eight numbers with distinct digits which are the pro-
ducts of three consecutive integers. Five pairs of these, those marked
with asterisks (*), are permutations of the same sets of digits.

M N M N M N
1 0 29 24360 111 1367520
2 6 30 26970* 130 2196870
3 24 31 29760* 140 2743860
4 60 33 35904 170 4912830
5 120* 34 39270 183 6128304
6 210%* 39 59280 196 7529340
8 504 44 85140 205 8614920
9 720 60 215940 270 19682730
11 1320 65 274560 333 36925704
13 2184 66 287430 341 39651480
14 2730 71 357840* 380 54871620*
17 4896 86 635970 409 68417520*
18 5814 90 728910 429 78953160
19 6840 91 753480* 454 93576210
20 7980 97 912576 1268 2038719564*
21 9240 108 1259604 1333  2368591704*

There are no values of N with exactly nine digits. There are two
pairs of values of N, 24-78953160 and 2184 -635970, which together
contain the ten digits. The digits of N are all even for M=1, 2, 3, 4,
and 19. The digits of N are permutations of consecutive digits for
M=5, 6, and 11, and if the ten digits are considered to be arranged con-
secutively in a closed cycle, for M =20, 90, 130, 170, and 270.

The frequency of the ten digits in the various values of N is given
in parentheses following the digits: 0(42), 1(23), 2(33), 3(21), 4(27),
5(22), 6(25), 7(25), 8(23), 9(24). The seven 8-digit values of N are the
solutions of problem 154, School Science and Mathematics, June 1938,
page 711. The two 10-digit values of N are solutions of problem E 338,
American Mathematical Monthly, May 1939, page 298.

L T * ok

NUMBER CURIOSITY - SOLUTIONS

In RMM No. 10, August 1962, page 34, Donald L. Vanderpool pro-
posed an interesting problem. He mentioned that Dudeney had found
139,854,276 and 923,187,456 as the smallest and largest squares
(11,826* and 30,3842, respectively) that contain all nine digits (exclud-
ing 0). It was required to find squares containing each of these nine
digits twice, thrice, etc.

Harry L. Nelson of Livermore, California has supplied us with some
interesting results along these lines. He programmed an IBM 7030
(STRETCH) computer to solve the problem and found the following:

97—
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a. The smallest and largest 10-digit cases:
320432=1026753849 and 990662=9814072356

b. The smallest and largest 18-digit cases:

3351801362=112345723568978496 and
9993904322 =998781235573146624

c¢. The smallest and largest 27-digit cases:

105462001953122=111222338559598866946777344 and
316210178081822=999888767225363175346145124

Mr. Nelson writes that it took the computer 30 seconds to find each
of the results in the 10- and 18-digit cases; and 73 seconds to find each
of the results in the 27-digit cases.

In connection with this problem, we quote from RMM No. 8, April
1962, page 34, the following result by David B. Hollander:

(246913578)(987654312) = (493827156)>
where each factor and the squared term contains each of the nine digits.

Merely as oddities, and without any bearing on the problem, J. A.
H. Hunter has found all the 18-digit squares that end with Dudeney’s
139,854,276:

460,949,3262=212,474,281,139,854,276
539,050,6742=290,575,629,139,854,276
749,988,1742=>562,482,261,139,854,276
750,011,8262=562,517,739,139,854,276

NUMBER CURIOSITIES
42+ 3= 43
1+32+5°=135
5+12+8%=518

62+3%= 63
1+72+5%=175
5+9%2+8%=598

—J. A. H. Hunter

* * * k%

101-101 =10201
11-10201-11 =1234321
"10101:10101=102030201
11-102030201-11 =12345654321
1010101-1010101 = 1020304030201
11-1020304030201°11=123456787654321
—J. A. H. Hunter

—dJ. A. H. Hunter
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VARIATIONS ON THE 1963 THEME
19 +63 +96 +31 =13 +69 +36 +91
197 +63%+96%2+312=132+692+ 362+ 912
196 +319 +963 +631 =136 +369 +913 +691
1962+ 3192+ 9632+ 631%= 1362+ 369+ 9132+ 6912
1963 +3196 +6319 +9631 =1369 +9136 +6913 + 3691
19632 + 3196%+ 63192+ 96312=1369% + 91362+ 69132 + 36912

— Clifford R. Dickinson; Camas, Washington
AND MORE

1963 =(1+1X1111-111)-111/(1+1+1)
=(9+9)99+9+.9)+.9
=(666 ~6—6)/(6/.6)+6/6
=31(333)~-33-3+3/3
N =(1+9+6+3)1+96+3)+(1+9)6+3
(6-1)%=-12+92+62+32
—Fr. Victor Feser, OSB; Richardton, North Dakota

* ¥ * * *
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Editor’'s Comment: The study of numbers yields endless discov-
eries. In past issues we have dealt with prime, Perfect, and Robinson
numbers. In future issues we shall deal with amicable, sociable, and
other types of numbers. In this note, Alan L. Brown introduces a series
of short articles about Multiperfect Numbers which will be continued in

later issues of RMM. J. S. M.

MULTIPERFECT NUMBERS - COUSINS OF THE PERFECT NUMBERS
by Alan L. Brown

Moniclair, New Jersey

A Perfect Number is one that equals the sum of its divisors, includ-
ing unity but excluding the number itself (6 and 28 are the first two Per-
fect Numbers). So the sum of all the divisors of a Perfect Number must
be twice that number, and it is this latter type of relation that we con-
sider in defining the various classes of Multiperfect Numbers: for
example, a Triperfect Number is one that equals three times the sum of

all its divisors.

About 550 Multiperfect Numbers have been discovered so far. The
simplest of these is 120%, a Triperfect Number: its divisors are 1, 2,
3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, and 120, totalling 360.

As other examples of Multiperfect Numbers, 30240 is a Quadriper-
fect, 523776 is a Triperfect, 14182439040 is a Quinqueperfect. The
largest known Multiperfect Number contains 264 digits, and of course
there must be many more still greater that await discovery.

This 264-digit Multiperfect is puny compared with the giant Perfect
Numbers that are known**; but in some ways it is far more complex.
Every even Perfect Number (no odd Perfect Numbers have been discov-
ered) is the product of one single prime and a power of two: the factors
of this 264-digit Multiperfect involve 46 different primes, and every
Multiperfect must ‘contain more than two different primes in its factors.

Much work has been done on Multiperfect Numbers, but we still
know very little about the theoretical considerations that are involved.
All known Perfect Numbers conform to one formula, but no rule or formu-
la has yet been discovered that will yield Multiperfects in general or
even any particalar class of Multiperfects (i.e., Triperfects, or Quadri-
perfects). For this reason, Multiperfects provide a fine field for study
and experiment for amateurs as well as for professional mathematicians.

* ['p, Marin Mersenne, in 1631, noted that 120 was a Triperfect Number.

** A complete tabulation of the 20 known Perfect Numbers can be found
in RMM No. 4, August 1961, pages 56-59 (The First 18 Perfect Numbers)
and in RMM No. 8, April 1962, pages 29-31 (The 19th and 20th Perfect
Numbers). The 20th Perfect Number contains 2663 digits!
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A WORLD OF DIFFERENCE by J. A. Lindon

Surrey, England

I always maintain that my friend Skewling i i i
) i g 1s a genius, but I admit
1t1 was a near thing. He emerged from the table, under which he had
plunged with a howl on my entrance, and rose accusingly to his feet.

““The greatest loss,’’ he began, his cold i i
papers. e vest loss,™ gan, eye following the swirl of

The door slammed. I looked under his hat on the ledge, but there

was nothing: i i
pastrl;(-)cu}:%gr. only the false teeth Skewling had made himself out of a

e . . .
Beer-germ?”’ I queried, noting the microscope.

o . , . .
A universe,”’ replied Skewling. ‘“‘An entire universe.’

I raised my eyebrow. (The other had i
. got sliced off th i
day when Nora threw the meat-axe.) “‘In that case,” I saide RI;:?I‘ZI'(();}:
. nothing much to worry about._It’ll expand, and in a few thousa;ld million
{}?:rlf pear}i)a.ps, 11f y&u advertise—’’ A thought struck me. I looked in
read-bin: ~ i . i i
e read “Hc?x {)ig (iaspﬁi‘:?e’x’lt moth-mousetrap with the supersonic whist-
“‘One point,’’ said Skewling grimly.
I felt peeved.
There’s nothing worse
For building a universe,

Where you need parts and joints,
Than points.

Was he pulling my podium? “‘Look—"’ I began.

“‘Man,”’ interrupted Skewling with animation, ‘i i i
tl}e only genuine 4TD universe with three time-dirﬁenlsfi(v)vr?ss E;acg;(;nglt)(;%ea:
dlmenswp ever discovered. And since the Trikes move along their
space-axis, as we do al_ong our temporal one, this means that the whole
of their space at any given 3-D moment is a single point. It’s unique!
Wonderful! Fascinating! And you have lost it,”” he finished coldly. .

*‘One point?”’ I mMused. “‘Rather i
bows in and all that sort of thing.”’ cramping. Have to keep your el-

“Do we fi . .
Skewling. find oTn' moment of current time cramping?’’ retorted

*“Oh, well, that’s different,’”’ I said. **
space to move about in, haven’t’we?”al + 1 mean, we have plenty of

) g 1

I frowned. “‘I don’t quite understand—’’

“I was just inquiring about that,”’ i i

. »") replied Skewling, ‘“‘when you
iifvtiﬁ eawiallnya. 'So far as.I cogld make out, there are thﬁae time-ax}:as:
real cul.i(,)us.”glnary-posmble time, and imaginary-impossible time. It’s

I thought about Nora throwing the meat-~ i i
certain time. ““‘You have forgottegn——" axe: That was unimaginable-
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Skewling interrupted again. ‘“There’s a world of difference between
our universe and that of the Trikes. Yet there are striking similarities,
too. For example, most of the Trikes believe that distance is infinite,
though a few of the more religious-minded talk about the Point of Judg-
ment and the End of the Line. Life is measured in spatial terms. It’s
no good your asking a Trike how long a pencil is; he would answer that
no one could possibly say until it had ceased to exist. In their world
things die when they come, literally, to an end. Ephemera live only a
few inches: elephants, on the other hand, may stretch for miles.””

“You're thinking of ducks,’’ I said. ‘‘Clearly, the most ductile—"’’
1 was always a good ducker.

““‘Space in Trichronotopia is a great metaphysical problem,’’ Skew-
ling went on, his ruler poised for a second attempt. ‘‘You see, they can
perceive only a single point of it. They feel vaguely that each point
leads to the next, and that this is somehow connected with the idea of
causation, but a full analysis defeats them. Their History is that of
time at a particular spot. Thus they speak of the Plague Mile, and of
the Bloody Hectometre, when all the members of a reigning family across
the Time Channel had their Royal Lines severed. Their calendar is all
chains and furlongs.”’

““‘Simultaneity—’’ I began.

Skewling waved his ruler. ‘‘Trichronotopian relativity would be be-
yond you, my poor fellow,”” he said. ‘‘Though it is worth noting that
events which occur at different times, but in the same place, are said to
be ‘punctaneous’ or ‘spotaneous’. Actual collisions, of course, with
them as with us, occur only when two 4-D point-events coincide. Times
can overlap quite freely along some axes and not others, just as an aero-
plane can fly over a house, or two Cadillacs pass safely on opposite
sides of the road. You may find it a bit confusing at first.”’

‘‘Motorists who are not law-abiding would seem to present a prob-
lem,”’ I suggested. ‘‘A single-point prison—"’

““The time-pen,’’ clarified Skewling. ‘‘They call it ‘doing space’,
because they are prevented from moving about in time. Many of their
phrases have a familiar ring. You hear the Trikes, when they are bored,
talk of ‘killing space’; their fairy-tales traditionally begin ‘Once upon
a spot’; when they return from their holidays — which take them well
away from the rigours of real time and out into imaginary realms —
people ask ‘Did you have a good length?’ and they will perhaps answer
‘Darling, we had the length of our stretches!” Children often accost
adult Trikes with a request to be told the ‘right distance’, they ask ‘How
far are we?’ or ‘What’s the space, please?’ and the adult will pull out
and consult his automatic tape-measure.’’

I laughed. “‘I’'m getting beyond my term,”’ I said. ‘‘Fancy referee-
ing a Trike boxing-match: 3-foot rounds, with 2-foot rests, in a ring 20
seconds square with imaginary time-ropes! Or athletics: trying to run
the 4-mile minute, and being timed—no, spaced with a micrometer! Oh,
dear!”’

Skewling looked supercilious. ‘‘Such matters are elementary,”’ he
said. ““The Trike I was talking to had just quarrelled with his wife. As
she hadn’t been at the moment he was supposed to meet her at he had
gone awhile, and she reckoned he ought to have stayed then longer. So
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where he returned she declared she had been then the whole space.
‘When in hades have you been?’ he demanded angrily. ‘You weren’t
now a few inches away.’” ‘Ooh, I was!’ she flamed. ‘It’s now, precisely
now, that I’ve been and nowhen else. When were you, if it comes to

that? “T'saw you, over in Nut Thursday, with that little flirt who lives
next-day to us. Come on, out with it here. What were the pair of you

imagining?’?®’

‘“‘She must have had telescopic vision,” I said, with a grin. “Time-
telescopic,”’ I amended hastily. ‘“No doubt her jealousy magnified the
occasion. How, by the way, do you construct a time-telescopic?’’

Skewling pushed the table aside and went down on his hands and
knees. ‘I think,”” he said, ‘‘that, as you are so interested, we had
better try to find Trichronotopia again. Kindly pass me three clocks
ticking at right-angles and a pair of headphones.’’

I looked in the whisky-trough, but no: only Skewling’s underground
bicycle and the vacuum crash-helmet in case you ran into something
that wasn’t there.

“Look,” T said. “‘I can’t wait. I’ve got to buy a meat-axe before
the shops shut. A foam-rubber one. See you in a few yards space.”” 1
popped my head back round the door. ‘‘With padded walls and a lock on
the outside.”’

That was when I lost my other eyebrow.

* % * * ¥

ROYAL V. HEATH

The Editor of Recreational Mathematics Magazine has obtained the
papers and manuscripts of the late Royal V. Heath - a puzzlist well-
known for many years to puzzle lovers. In preparation for the publica-
tion of a series of his works, the Editor would like to obtain as complete
a list as possible of his previously published works. Heath published
material ranging from small notes to articles in a variety of mathematics
journals, magicians’ publications, pamphlets, and books.

Would RMM readers do a bit of research for RMM by submitting any
references to anything by Royal V. Heath that has been published in
any book, journal, magazine, pamphlet, etc.?

If at all possible list:

— Title and date of the publication and where published.
— Title of the article or note published.

— A brief abstract of the contents.

— Any errors subsequently noted.

If anyone can actually supply the original publication, the Editor
will make a copy and immediately return the original. If only partial
information can be supplied, please submit it - it may be the completion
of someone else’s partial information.

Heath published many numerical recreations and the actual numbers
and observations (or at least enough to distinguish the work from others)
should be sent.



by Ali R. Amir-Moéz

GEORGE CANTOR (1845-1918)

““What an interesting but simple mathe-
matical idea!’’ said George to his teacher.
‘““We can make an arithmetic using sets.”’

‘““What do you mean?’’ asked the teacher.

Then George Cantor explained his idea:
Suppose we take sets of points in a plane.
We call these sets A, B, C, ... Then we
say A +B is a set which has all the points of
A and all the points of B (Figure 1). The
shaded area is A+B. Then we call the part
which is in both A and B the product of A
and B. The shaded area in Figure 2 is A xB.

Figure 1 Figure 2

‘‘What happens if there is no common part of A and B?’’ asked the
teacher.

“We say AxB=0."" answered George.

‘“This is ridiculous! How can a product be zero without one of the
factors being zero?’’ said the teacher, while laughing. ‘‘You are wast-
ing your time.”’

George Cantor did not give up his ideas but went on to develop his
set theory. He taught at Halle from 1869 until 1905 and had started
publishing his mathematical works in 1870.

It is well known among mathematicians that Kronecker, a mathema-
tician during the nineteenth century, did not like Cantor. After first
making quite a bit of money, Kronecker settled in Berlin in 1855, teach-
ing at the University without having a professorship. Finally, in 1883,
he became a professor.

Kronecker thought that the work of Cantor was going to ruin mathe-
matics. But it did not take long before the work of George Cantor on
set theory became one of the most important parts of mathematics; par-
ticularly when topology became an essential part of mathematics. In
1901, Lebesque introduced a new idea about measure which made Can-
tor’s set theory ideas even more important. The arithmetic of sets is
very easy, particularly for all the sets which are in a plane inside a
rectangle.

We suppose the set of all points

I in a rectangle is called I (Figure 3).
Then for any set A inside I we see that
IxA=A.

This means that the common points of
I and A are all in A. Here I really
works as if it were 1.

_34_

Figure 3

FEBRUARY 1963 RECREATIONAL MATHEMATICS MAGAZINE 35

We shall not continue the discussion here, but give only a few sim-
ple ideas in order to arouse the reader’s curiosity. We are sure that the
reader will find some of these ideas in most high school books and there
are books which now teach set theory to even younger children.

George Cantor’s theory of transfinite cardinal numbers is a great
contribution to mathematics. Many mathematicians refused to accept the
infinite except as a process. Cantor’s most serious opponent was Kro-
necker who held opposite ideas. He wanted to arithmetize mathematics.
Today’s controversy between the formalists and the intuitionists is a
continuation of the controversy between Cantor and Kronecker.

* * * * *

PROTEAN SHAPES WITH FLEXAGONS by William R. Ransom

Tufts University

Proteus was a minor deity who could change his shape at will. A
hexagonal Proteus is made from a strip of tough paper, about twelve
times as long as it is wide, folded into a succession of equilateral tri-
angles (Figure 1). If you follow the directions very carefully until you
are satisfied that the shapes in Figures 2 to 11 are possible, then with
an unmarked Proteus you have a very intriguing puzzle to attain them
again. The Proteus is generally called a flexagon and the name Proteus
is applied here only to indicate the recreations possible with a flexagon.

1 \2/3\%/5\8/7\8/9 \!%11\\%/13

Figure 1

Number the triangles in the strip 1, 2, 3, . . 19, with the letters A,
B, C, . . S on the back, with the A and 1 back-to-back and so forth up to
S and 19 back-to-back. To make the flexagon, fold: B against C; D
against E; 2 against 5; F against G; H against I; J against K; 8 against
11; L against M; N against O; P against Q; 14 against 17; A against R;
and then paste S against 1.

Check: your flexagon will have 4, 7, 10, 13, 16, 19 on one side and
3,6,9, 12, 15, 18 on the other.

Now you immediately pass from the plane hexagon shape to a series
of 3-dimensional figures.

1. BOAT: Fold the flexagon along the diagonal that divides 4 and
16 from 7 and 13, with these sides outside. Bringing 3 and 6 together
hold 4-7 in the right hand with the fold at the top. Bring the corner of
13 that touches 7 toward you and bring 17 against 8 and 14 against 11.
Now, with the long side up, open the boat separating I from H (Figure 2).

2. BUOY: Bring bow and stern of the boat together so that the
upper edge of 7 touches the upper edge of 13 and the upper edge of 4
touches the upper edge of 10 (Figure 3).
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3. SQUARE CUP WITH HANDLE: Return to the boat, and hold
10-13 in the left hand. Push the corner of 4 that touches 10 towards you
and down and you have a square cup, with 3, 6, 9, 18 inside and its
handle in your left hand (Figure 4).

Figure 4

Figure 2 Figure 3

4. TWIN CUPS: Flatten the square cup, bringing 3 against 6 and,
with the long side at the bottom, pull out the upper corner of 4-19. Then
keeping R and 10 in one plane and the cup (A, F, G, R inside) up, pull
out the upper corner of 13-16. This gives the twin cups that have A, F,
G, R and J, K, P, Q inside them (Figure 5).

5. PENTAGON CUP: Pull on 7 so as to make 10-J slide in between
Q and R. Now you have a pentagonal cup with a triangular cup attached.
Their insides are A, F, G, 9, R and K, P, Q (Figure 6).

6. TRIANGULAR CUPS WITH HANDLE: Fold A against F. This
makes a handle with two cups, G, 9, R inside one and P, Q, K inside
the other (Figure 7).

Figure 5 Figure 6 Figure 7

7. CORNERED CUPS: Return to the pentagon cup and fold A
against R. This gives two triangular cups, corner to corner, without a
handle (Figure 8).

8. SIDE-BY-SIDE CUPS: Bring 4 against 19. This gives the same
two cups side-by-side (Figure 9).

9. THREE PYRAMIDS: Swing the cups apart until 8 and 16 almost
touch, keeping F and Q in the same plane. Lift the corner of 4-19 at the
bottom of the cups and you have a square pyramid with 4, F, Q, 19 out-
side and 3, 6, 10, 18 inside, and two triangular pyramids attached to the
F and Q sides (Figure 10).

o

Figure 8 Figure 9 Figure 10
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10. FLOWER BASKET: Bring the sides 3 and 18
together and you have something to hang up with flow-
ers in the two cups (Figure 11).

Now you will wish to get back to the original
hexagon. Open the 4-19 and flatten 3-18 against 6-10, V
and you can open out and get the pentagon cup figure. m
Push 8-9 through between Q and R arriving back to
the twin cups. Flatten A to R and G to F and flatten
P to Q and J to K. Hold F against G and raise the
corner of 13 that touches 7 and flatten 8 against 11
and 14 against 17. Now you have the original hexa-

gon when you unfold along the 7-13 diagonal, opening
out the edges at 10 and 19.

There are a great many otl}er shapes, not easy to describe, that can
be made by folding and unfolding Proteus. In your struggles to get the
ten listed here, you will come across many of them maddeningly.

It is so easy to go astray and not be able to get back to where you
were, that you will undoubtedly find it necessary - before becoming an

f‘expert” - to unfasten the ends, straighten out the strip, and refold it
into the original hexagon.

Figure 11

M Kavrfmon

‘““ANY CHANCE OF BEING MOVED TO A NEW CELL?”’



PUZZLES AND PROBLEMS

1. Cigarette Selling

A cigarette factory sells cigarettes in two different packs: packs of
12 and packs of 25 cigarettes. Mr. Smith, our accountant puzzlist, has
noted that sales of a given number of cigarettes would involve some
problems. 37 could be sold without breaking any packs and also 36 - but
not 38. He also noted that, for example, 573 cigarettes can be sold with-
out breaking any packs (21 packs of 25’s and 4 packs of 12’s); likewise
574 and even 929 cigarettes (29 packs of 25’s and 17 packs of 12’s). He
wonders what might be the greatest number of cigarettes that can not be
sold without breaking open any packs. That is, any greater number of
cigarettes can be sold without breaking open any packs.

As an accountant, he naturally wonders what the general solution to
this problem would be for any two different size packs consisting of L
and M cigarettes. (C. C. Verbeek: Den Hague, Netherlands)

* * ® * &

2. The King’s New Banquet Hall

“Forsooth!”’ said the King one medieval day, ‘“My banquet hall is
getting rather shabby. I must build another.”’

With the help of his architect he worked out the cost. Then he went
to see his mathematician and -tax-collector, interrupting him half-way
through the calculation of a recurring decimal.

‘“‘How many people, counting barons, knights, and yeomen, appear
on my list for taxes?’’ the King asked.

““One hundred and forty-two, your Majesty.’’

““My architect tells me I shall need 1136 crowns in order to build
my new banquet hall. You must impose a capitation levy.”’

““That works out at just eight crowns per taxable person.”’

““That won’t do at all,”” said the King. ‘I want you to soak the
barons. They’re getting much too powerful - and, besides, they’ll be
using the hall more than anyone else. They carouse too much. I suggest
we tax them eighty crowns each. That way the knights and yeomen will
have to pay only a little.”

After a few calculations, the tax-collector decided to accept the
King’s suggestion and taxed each baron eighty crowns. Then by taxing
each knight four crowns, and each yeoman one crown, the tax-collector
obtained altogether the required amount of exactly 1136 crowns.

How many barons, knights, and yeomen were there?

(D. C. Cross; Birmingham, England)
* * * ¥ *

3. Wasted Inches

““I thought you were playing Patience,”’ said Susan. ‘‘Why all the
cussing?”’

‘““The table’s too small,”” Len laughed. ‘‘Or maybe the cards are
too big, even though they’re regular size, 2% by 3% inches.”

““So the furniture’s wrong!’’ his wife smiled. ‘‘What’s the game?”’

‘““A new one. I have to lay out the whole deck of cards, edge to
edge without overlapping or projecting beyond the table,”” Len told her.
‘““But there’s not enough room, and I’'m left with a few clubs and the
same number of spades. Unfortunately, it’s the only rectangular table
we have.”’ 38
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) ‘“It’s a funny shape,’’ Susan commented. ““One inch longer than it
is wide.”’

“I know.”” Len was jotting down some figures. ‘‘Arranging the cards
the best way I can, I’ve still got eleven and a quarter square inches of
wasted space.”

What were the dimensions of that table top?

(J. A. H. Hunter; Toronto, Ontario)

L . * &

4. Some Like it Wet

Bill had al_rnost given up hope when at last a taxi responded to his
calls and drew into the curb. His feet barely touched the drenched side-
walk as he made the open door from the shelter of the porch, but even so
the deluge soaked him.

*“All right for ducks, and I guess for cabbies too,’”” he said. ‘City
Hall, please.’’

The driver griqned. ““Only time this job pays off. Last month I
averaged exactly thirty-four bucks a day for the days it rained.”

. “énd did it rain!”’ exclaimed his passenger. ‘‘Most days, it seemed
0 me.

““Sure did,"’ the driver. agreed. ‘‘It’s funny, but I averaged an exact
number of dollars for the fine days, but for the whole month my average
was just three times that.’’

Bill’s mind works fast. ‘“Didn’t you take any days off?’’ he asked.

‘“‘Not last month, I didn’t,”’ the man replied. “‘It was too good a
break to waste.”’

It must have been a wonderful month for him. How much had he

taken? (J. A. H. Hunter; Toronto, Ontario)
* * L3 * *

5. How Many Oranges?
A fruit dealer has a number of oranges for sale. To the first cus-

.5. tomer she sold half of her oranges plus half an orange. To her second

customer she sold half of the remaining oranges plus half an orange. To
her third customer she sold half of the remaining oranges plus half an
orange. To her fourth customer she sold half the remaining oranges plus
half an orange, thereby selling out her entire stock.
How many oranges had she started with?
Selling in a similar manner, and never cutting any oranges in half
how many oranges would she require for N sales? ’
(Dorman Luke; West Palm Beach, Florida)

* * * * *

6. A Number Problem

In how many ways can M? be expressed as the sum of N different
squares, N>1? .

For M =20 we have only one way for N=2 (16%+122), none for N =3,
and many (how many?) ways for N=5 (e.g.: 172+92+5%+922+12).

The problem may be generalized: in how many ways can M® be ex-

1 pressed as the sum of N different nth powers, N>1?

(U. Clid; Cleveland, Ohio)

% * * * *
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7. A Famous Digit Problem

The nine digits, 1 to 9, are to be used, in order and in reverse order,
with plus or minus signs, only, to equal 100. For example: 12+3+4+5
-6-7+89=100 and 9+8+76+5+4-3+2-1=100. The Junior Depart-
ment of RMM had featured part of this problem as a good exercise for
students (October 1962). The reader is also referred to RMM No. 1, Feb-
ruary 1961, pages 39-42 for 113 solutions to the problem using any math-
ematical symbols. The 11 solutions to the first part of the problem (the
digits used in order) appear in that list. The additional 15 solutions to
the second part of the problem appear in the January 1963 issue of
Scientific American, page 10.

It is interesting to note that none of these 26 solutions start with
-1 or -9. Yet there are four solutions. We leave the reader to discover
them. :

Ira Doak, of Pasadena, California, points out that the sum of these
nine digits is 45. Hence we suggest the same problem, with the same
condition (using plus or minus signs only), with two minor modifications:
the sum is to be 45 and we are to use the minimum number of plus and

minus signs.
* * * % *

8. A Factorial Conjecture

Fr. Victor Feser, of Richardton, North Dakota, submitted this in-
teresting little factorial oddity:
6!-7!1=10!

where n!=1-2:3- - - ‘n.

Further work produced two more examples, admittedly trivial, where
the product of the factorials of two consecutive numbers equals a facto-
rial: (0'=1)

0!-1!'=1! and 1!-2!1=2!

It is not difficult to find a number of examples if non-consecutive
numbers are used: 4!-23!=24! 21-4!1-471=48!, 21-31-41-287!-288!.

Of more particular interest is whether a factorial can be formed by
the product of three or more factorials of numbers in arithmetic progres-
sion. For example: 3!-5!:7!1=10!.

J. A. H. Hunter conjectures that if we define F(x,n) as the product
of n factorials, NI-(N +x)1-(N +2x)!- - - «(N+nx-x)!, with a ‘““‘common dif-
ference’’ x, then F(x,n)=M! can have only a finite number of solutions
for any particular values of x and n. We have given the three solutions
for F(1,2)=M!. For F(2,3)=M!, we have only 1!-3!-5!=6! and 3!-5!"7!=
10!.

Unproven conjectures always offer a challenge to the professional
mathematician as well as to the amateur. Another teasing problem here,
of course, is to find numerical examples for given values of x and n in
F(x,n)=M!.

% EJ E3 * E]

In the October 1962 issue we expressed the hope of publishing a
dozen puzzles and problems in each issue. However, the supply has
suddenly slowed down and we urge readers to try their hand at compos-
ing original material for this department. All submitted work will be
examined carefully for possible publication.

Please, do not submit previously published work unless the original
source is given.

ANSWERS FOR THE DECEMBER 1962 ISSUE OF RECREATIONAL
MATHEMATICS MAGAZINE.

The list of puzzle solvers will be found on Cover III.

ALPHAMETICS (Page 24 - December 1962 RMM)

. CI(JI&BD;IATH CLUB MEETS=1345 8697 10042 (for the largest value
o .

(2) ALFRED +E =NEUMAN — 704836 + 3=231572 (base-9). Harry
L. Nelson, of Livermore, California, notes that, in base-9, ALFRED'E =
NEUMAN - 1640575 =852318.

(3) ZERO ONE TWO THREE =9635 546 185 10366 with 4 and 8
interchangeable.

(4) RMM HAS MOVED =599 162 97038.

(5) NEBULOSITY =1234567890.

PUZZLES AND PROBLEMS (Pages 20-22 - December 1962 RMM)

1. Flowers for the Girls: We derive the equation 5x +4y+ 3z =60,
which has 37 positive non-zero integral solutions. The maximum number
of these solutions, giving the same sum for x +y + z, is 8: the sum being
15. Hence there were 15 girls in the troupe.

2. Four Against Four: x*+y*+a*+b’=2*+w*+a*+b*=A%, so x*+y’=
2*+w?, for which the smallest integral solution is well known to be:
1°+12°=9°+10° Hence, a*+b°=A%-1729. By quick trial, 13*~-1729=
468=5%+ 7%, so the required solution is: 13+5°+ 73 +12*=5*+7*+9*+10° =13°.

3. Down to Earth?: The two smallest triangles are those with sides
4,4,1 a1_1d 2,_2, 5. However, it was pointed out that two congruent tri-
angles with sides 1, 1, 1 fulfill the stated conditions.

4. Did the Butler do it?: Yes, he did. He lied when he said that
three burglars left two pennies after dividing the rest evenly. Any
square number divided by three leaves a remainder of 0 or 1, but never

5. The Seven Fortunes: The fortunes of the seven kids are 1, 2,
4, 8, 16, 32, and 2816 pennies making a total of 2879 pennies.

6. Electrical Switching: The diagram at the right A B
shows one possible solution. y -

7. Can You Couple the Couples: Andy and Fay,
the mother; Bert and Eva; Chris is single.

8. Rather Precious Antiques: The two calculators
cost $980 and $3675.

ERRATA FOR THE DECEMBER 1962 ISSUE OF RMM

Page 7: A 4th order Perfect Digital Invariant was omitted. Please in-
sert 9474 (=9*+4*+7* +4*) in the table after 8208.

Page 25: The Index covers Issues 7 through 12, not 6 through 12.
—41—
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NOTE: In reference to the article Fermat’s Last Theorem in the
December 1962 Jr. Dept., it has been reported that the theorem has been
proven true for all values of n less than 4001. There are no integral

solutions to x™+y®=2z" for values of 4001>n>2.
* % * ® *

Miscellaneous

Alphametics (RMM No. 10, August 1962, page 11): Dudeney’s
subtraction ‘‘Verbal Arithmetic’’ has a multitude of solutions:
EIGHT ~ FIVE = FOUR:
12348 - 6291 = 6057; 12375-6281=6094; 12780-6231=6549;
13870 ~6341 =6529; 14820-7461=7359; 15230~7541="7689;
16725 -8631 =8094; 16743-8651=8092; 16905-8671=8234;
17936 - 8791 = 8245; 17054-~8761=8293; and U and V are in-
terchangeable.

Puzzle No. 8 Curious Number Relationships (RMM No. 9, June
1962, page 49). Some additional curiosities: 10?2+ 1%« 101 and 1°+ 22
+3%+4*=100.

Dale Kozniuk of Delburne, Alberta gives us this interesting form:
10°+02_ ,+05 4+ . . - +05+07+17=1000...001

IF YOU HAVE MOVED OR ARE GOING TO MOVE

Please let us have your new address as soon as possible. Always
include your old address with the new one. If you have your old address
label copy the IBM code numbers (see page 17 in this issue for explana-
tion of the label code) - this will tell us just about everything we need
to know to find your card.

" Much time is lost - as well as magazines - when address changes
are delayed or not reported.

If you have any questions about your RMM subscription don’t hesi-
tate to write - including your full name, address, and code numbers with

the questions.
Send all address changes and information and subscription informa-
requests to RMM, Box 35, Kent, Ohio.

ROYAL V. HEATH FANS -
See page 33.

RTINS s

magazine
JUNIOR DEPARTMENT

All correspondence and material relating to the Junior Department
should be sent to:
Howard C. Saar
1014 Lindell Avenue
Petoskey, Michigan

All articles, problems, solutions, ideas, etc., should be submitted
to the JD editor typewritten or neatly written in ink on 8% x11 paper
(except those items obviously too large to fit those specifications).

RMM reserves the right to edit all manuscripts accepted for publi-
cation to conform to reasonable literary standards. If we plan any major
alterations you will be notified. All materials submitted to us for con-
sideration become our property and will not normally be returned.

E I T I

A number of readers noted that Mr. Dickinson’s problem Sums of
Primes (problem 4 in the December 1962 Jr. Depi., page 55) led to an-
other problem.

First, we must drop the idea that 1 is a prime. Also, 2 is a prime -
the only even prime, of course.

Primes were found equal to the sum of three smaller primes in only
one way (e.g., 19=3+5+11; 23=5+7+11). Many other primes were
found to be equal to three or more different groups of three primes (e.g.,
29-83+7+19=5+7+17=5+11+13; 47 is the sum of eight different
groups of three different smaller primes.

As an elementary problem we ask: can any prime greater than 2 be
expressed as the sum of 2 plus two different odd primes? If so, give an
example. If not, prove it.

We hope teachers find the Jr. Dept. of some value. Obviously, not
all teachers will find all the material in any one Jr. Dept. useful in their
own particular circumstances. However, the rest of RMM can certainly
be used effectively. The Alphametics offer an excellent source of fun
and application of mathematical principles. Very probably, alphametics
constitute one of the very few types of mathematical problems requiring
no more than the knowledge of the basic operations of arithmetic and
which can still offer considerable challenge to the graduate student of
mathematics. :

In this issue, for example, we refer teachers to The Elusive Number
Pi (page 18), Sir Isaac Newton, Problemist (page 19), and Protean
Shapef zl;)ith Flexagons (page 35) for material for classes and mathema-
tics clubs.
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by Robert H. Scott
Dunbar High School Mathematics Department
Dunbar, West Virginia

A BOTTLE AND A CORK

A BOTTLE and a CORK

Cost one DOLLAR and a DIME.
The bottle cost one dollar
MORE than the cork.

What did the cork cost?

Most persons answer ‘‘ten cents’ and of course they are wrong.
This problem can be solved a dozen dlffe}'ent ways but our geometry
class got a ‘‘big bang’’ by solving it graph}cally, using rectangular co-
ordinates. It is not necessary to plot points to an exact scale or to
introduce any of the theorems of analytic geometry.

0 Bottle v B

If the cork cost nothing the bottle would be $1.10 and if the cork
cost $1.10 the bottle would cost nothing. However, thpse statements
are true for one of the conditions of the problem, but v1olatehthe oi_:her
condition. Thus, the bottle has a domain between 0 and 1.10 inclusive,
while the range of the cork is from 1.10 to 0 inclusive. Th_1s is shown
on the graph by a negative slope from R to S. Now, violating'the first
condition of the problem, but not the second, suppose the cork cost no-
thing. Then the bottle would cost $1.00. If the cork cost 1¢, the bottle
would cost $1.01, and so on. Thus, the increment of the bottle (AB)
would equal ¢, the cost of the cork. ThlS_ is showp on the graph by a
positive slope from V to W. The point of intersection, P, is tha.t point
which correctly fulfills both conditions of the problem. l_)erpendlculars
from P to B and C intersect the axes at Bottle =$1.05 (midway between
$1.00 and $1.10) and at Cork=$0.05. This gives us the answer to the
problem.
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RECURRING DECIMALS by Peter Farrell, Age 15

Birmingham, England

I read The Magic of One Ninety-Seventh by 12-year-old Avner Ash
in the October 1962 issue of RMM and worked on recurring decimals with
some results which I believe will be of interest to fellow readers of the
Jr. Dept.

The recurring pattern of § is 0.142857 . . . This may be obtained:

1. by writing down the 7 7
2. multiply this by 5, write the last digit of the product down

to the left of this, and carry the other digit(s) D7
3. repeat by multiplying the 5 by 5, adding on the 3, etc. ,857

The whole recurring pattern may be obtained this way. This may
appear rather trivial, or a freak example, but it is in fact a particular
example of a general case.

The General Case

It is required to find the recurring decimal pattern of 1 using
the above method. 10x-3

1. It always ends in 7, write this down first.

2. Repeat the above method, using 7x -2 as the multiplier.
(In the first example, 5 was a particular case of the multiplier 7x~-2.)

To clarify this further I will give another particular example.
+=0.0588235294117647 . . . 1

This is an example of 10x=3 where x=2. The recurring pattern
gmdls2 in 7 as noted earlier. The multiplying factor, 7x -2, where x=2,
is 12,

The 7 is written down 7
And multiplied by 12. The 4 is written down and the 8 is
carried. i 47
The 4 is multiplied by 12, the 6 written down, and the 5 is
carried. Etec. 647

The process is continued until the recurring pattern becomes evi-
dent.

Notation

To conserve space in further general cases I have devised a nota-
tion.

1 . .
The recurring pattern of 0 =3 "y be obtained by starting
with 7 at the right hand end and successively multiplying by 7x -2

1

may be symbolized by m:x (Tx ~2)=—717.

The following are also found to be true.
1 1 1

= . = M ‘=X 3 1 '(-——_3
10x—1—xx 1; T0x 71 X(9x+1) 9; T0x+3 Bx+1)

There is one recurring decimal in the form of

le-—i which is of
particular interest to me. It is the case when x=5, i.e., %.

—45—
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+=0.020408163265306122448979591836734693877551 . . .

This may be formed by taking the 1 with which it ends, as noted
in the symbolized formula above, and working backwards as described
earlier by multiplying by 5.

This number may also be found another way by taking the powers of
2, shifting the last digit of each successive power of 2 to the right, and
performing an indefinite addition as shown below:

02
04
08
16
32
64
128
256
512
1024
2048
4096
8192
16384

etc...

020408163265306122448979...etc...

Similar properties are possessed by the recurring pattern of 4.

2 -0.01030927835051546391752577319587628865979381432989690
721649484653608247422680412371134020618567 . . .

This may be obtained by adding successive powers of 3 in the same
manner as above, thus:

01
03
09
27
81
243
729
2187
6561
19683
59049
etc...

010309278350515463...etc...

There is so much that could be said about this one guriosity. 1
don’t propose to go into it any further, but I would be very interested if
any reader could generalize it, using algebra.

To get back to % - Consider it written out on a cylinder, the 1 at
one end coming next to the 0 at the beginning. This number may be I_nul-
tiplied by any number (excluding multiples of 7) between 2 and 48 just
by starting at a different point along it. The following shows the period
of &, showing the point along it at which one must start to multiply it

by the number in the circle.
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I will clarify this with an example. Suppose it is desired to find .
Find the number 26 in the circle. Start reading off the period from this
point, going to the right, and upon reaching the end go back to the begin-
ning. Therefore, the recurring pattern of % is 0.530612244897959183673
469387755102040816326 . . .

The reader may notice a pattern existing in the series of numbers
in the top and bottom rows of circles.

It is worth examing the period of % under the same conditions.
%=0.052631578947368421 . . .

This number may be multiplied by any number between 2 and 18 in
much the same manner as %.

BOOODE0E00ER000D
RAANS

1578947368421

I have dealt with &. What about s? This number has properties
much the same as 5. Here it is:
51 =0.0029154518950437317784256559766763848396501457725947521865
889212827988338192419825072886297376093294460641399416909620991
253644314868804664723032069970845481049562682215743440233236151
603498542274052478134110787172011661807580174927113702623906705
53935860058309037900874635568513119533527696793 . . .

The rest of the work is up to you!

PROBLEM CORNER et e
The Problem Corner is a bit small this time in order to bring Peter

Farrell’s most interesting observations about recurring decimals to our
readers.

1. What’s His Number?

““You got a very special car plate number this time, Dad,”’ said
Andy. ‘““I’ve been figuring it out.””

““Yes, it’s never easy to get a 3-figure number.’” agreed his father.
““I guess that’s what you mean.”’

The boy grinned. ““More than that. The digits add up to 24, and
the first digit of its cube is a four.”

That did make it special! What was the number?

(Dale Kozniuk; Delburne, Alberta)
*

*® ¥ * *

2. Another 1963 Digit Game

Using only the digits 1, 9, 6, 3, and in the same order, form expres-
sions equal to the integers from O and up. For example: 1:9-(6 +3)=0;
19-(6x3)=1; (1/9)6:3)=2; etc.

(Clifford R. Dickinson; Camas, Washington)
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3. Area Doubling
A rectangle has a perimeter of 440 feet. Its area can be tripled by
increasing its perimeter to only 480 feet.
What are the dimensions and area of the original rectangle?
* * * * *

ANSWERS TO THE DECEMBER 1962 JUNIOR DEPARTMENT PROBLEMS

1. 1963 Puzzle: There are several ways of using the ten digits
as requested, e.g.:

201 x 7=1407 120 x9=1080
69x4= 276 64x8= 512
35x8=_280 53x7=_371

1963 1963

9. A Train and Tunnel Problem: We admit there might have been a
slight ambiguity here. The train, travelling 60 miles per hour (88 feet
per second), takes 3 seconds to enter completely inside the tunnel - so
the train is 264 feet long. However, the ‘“30 seconds to pass complete-
ly through the tunnel’’ includes the 3 seconds required to completely
enter the tunnel and the 3 seconds to completely leave the tunnel. This
means that the complete train was in the tunnel only 24 seconds. Any
given part of the train, say the front, spends only 27 seconds in the
tunnel - so the tunnel is 2376 feet long.

3. A Number Puzzle: The digit a is 3, and the original 4-digit
number is 1377.

4. Sums of Primes: If we include 1 as a prime, then the smallest
primes that are the sums of 2, 3, 4, or 5 different groups of three differ-
ent primes are:

17=1+34+18=1+5+11
19-1+5+13=14+7+11=3+5+11
93-1+3+19=1+5+17=3+7+13=5+T7+11
29=1+5+23=1+11+17=3+7+19=5+7+17=5+11+13

If we do not include 1 as a prime, then the smallest primes in their
respective groups are:

923=83+T7+13=5+T7+11

929-3+7+19=5+7+17=5+11+13
31=3+5+23=8+11+17=5+7+19=7+11+13
37=3+5+29=3+11+23=5+13+19=7+11+19=7+13+17

5. Designing Stunt Section: 184,756 designs are possible.
* * * * *

No list of solvers was turned in at press time, but we will include
it in the next listing in the Combined Issue (see page 17 for details
about the Combined Issue).

* %k k0¥

In the next issue: Have you ever played with magic squares? If so,
you will be quite interested in the work of young Dale Kozniuk in this
interesting area of recreational mathematics. If not, you will be enlight-
ened by the magical world of magic squares! An original cross-number
puzzle particularly for the age 12-or-less set will make its appearance.

PUZZLE SOLVERS: We have listed the solvers of the various puzzles
in the December 1962 issue of RMM. See pages 41-42 in this issue for
the December 1962 puzzle answers.

ALPHAMETICS

Raymond Aaron, Toronto, Ontario (1, 3); Merrill Barnebey, Grand
Forks, North Dakota (1, 2, 3, 4); David R. Barstow, Wethersfield, Con-
necticut (1, 3); D. C. Cross, Birmingham, England (1, 2, 3); Clifford R.
Dickinson, Camas, Washington (1, 3); Harry M. Gehman, Buffalo, New
York (1, 2, 3); Edward Joris, Antwerp, Belgium (1, 2, 3, 4, 5); Prof.
Eglgar Karst, Norman, Oklahoma (1, 2, 3, 4, 5); Felix Kestenholz-Seiler,
Liestal, Switzerland (1, 3, 4); Jonathan Khuner, Berkeley, California
(1, 3, 4, 5); Dale Kozniuk, Delburne, Alberta (1, 2, 3, 4, 5); Thomas J.
Mor(is, San Juan, Puerto Rico (1, 3, 4, 5); Harry L. Nelson, Livermore,
Cah_forma 1, 2, 3, 4, 5); Wade E. Philpott, Lima, Ohio (1); Stanley
Rabinowitz, Far Rockaway, New York (3); Thomas A. Roberts, Lincoln-
wood, Illinois (1); R. Robinson Rowe, Naubinway, Michigan (1, 2, 3, 4,
5);_ C. W. Sweitzer 1I, San Diego, California (3); Alfred Vasko, Swanton,
?lhlg (é, 43,5;1)); Anneliese Zimmermann, Bad Godesberg, West Germany

PUZZLES AND PROBLEMS

Anneliese Zimmermann, Bad Godesberg, West Germany (1, 2, 4, 5,
7, 8); Alfred Vasko, Swanton, Ohio (1, 2, 3, 4, 5, 6, 7, 8); Graham C.
Thomp.son, Binghamton, New York (1, 2, 4, 5, 6, 7, 8); C.W. Sweitzer II,
Sqn l_)lego, California (1, 2, 4, 7, 8); R. Robinson Rowe, Naubinway,
Michigan (1, 4, 5, 6, 7, 8); Thomas A. Roberts, Lincolnwood, Illinois
(1, 4, 5, 6, 7, 8); Stanley Rabinowitz, Far Rockaway, New York (1, 4,
D, ’Z, 8); Wade E. Philpott, Lima, Ohio (1, 4, 6, 7, 8); Clarence R.
Per.zsho,. North Mankato, Minnesota (6); Harry L. Nelson, Livermore,
California (1, 3, 4, 5, 6, 7, 8); Thomas J. Morris, San Juan, Puerto Rico
(1, 2, 4, 5, 7); Dale Kozniuk, Delburne, Alberta (1, 2, 3, 4, 5, 6, 7, 8);
Jonathan Khuner, Berkeley, California (1, 2, 4, 5, 6, 7, 8); Felix Kes:
tenh(_)lz-Seiler, Liestal, Switzerland (1, 4, 6); Edward Joris, Antwerp,
Belgium (1, 2, 4, 5, 6, 7, 8); R. S. Johnson, Town of Mount Royal,
Quebec (1, 2, 4, 5, 6, 7, 8); Harry M. Gehman, Buffalo, New York (4, 5);
ana!d L. Enyeart, Los Angeles, California (1, 4, 6, 7, 8); Clifford R.
Dickinson, Camas, Washington (1, 4, 6, 7, 8); Dermott A. Breault, Wal-
tham_, Massachusetts (4, 6, 7, 8); David R. Barstow, Wethersfield, Con-
necticut (1, 2, 4, 5, 6, 7, 8); Merrill Barnebey, Grand Forks, North
Dakota (1, 2, 4, 5, 6, 7, 8); Raymond Aaron, Toronto, Ontario (1, 4, 8).
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