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Prom the Editer

1

Regular readers of RMM will note the striking change in cover
design - an idea which will be a regular feature from now on. Each
issue will have a different cover which will feature, in most cases, some
particular article inside.

The response to the editorial request to send in comments and
answers has been most gratifying - as you can easily note by seeing
the list of names of puzzle-solvers throughout the.pages of this issue
of RMM.

There were many responses to the request that those desiring a
revised reprint of RMM No. 1 (February 1961) inform the editor and
I hope that others who would like to see and purchase such a reprint
will drop a postcard to the Editor, RMM, Box 1876, Idaho Falls,
Idaho. The next issue (October) of RMM will carry a notice stating
whether a reprint will be made or not - and how it might be obtained
if reprinted. So, if you want RMM No. 1, let me know.

* *

The next issue of RMM will carry Part 2 of S. W. Golomb’s “Gen-
eral Theory of Polyominoes” which is called Patterns and Polyominoes;
Ali R. Amir-Moez will divulge the proper method of spiral construction;
Maxey Brooke will show how a Magic Tessarack is constructed - a
magic four-dimensional cube!; of course, other articles and the usual
features and departments.

* * *

Reader reaction to RECREATIONAL MATHEMATICS MAGA-
ZINE as a new media for mathematics in the light and entertaining
manner has been beyond the expectations of the editor - for which
much thanks must go to all the writers and contributors of the material
found within the pages of RMM.

1 August 1961 J.S.M.

—2

Tte Genenal Theory of Polyominoes

gy Solomon W. go['omg

Editor’s Introduction: In this issue of RMM Solomon W.
Golomb starts the first of a three-part series on Polyominoes - the
succeeding articles to be published in the October and December
issues. The term “Polyomino” was originated by Golomb and is
defined as nothing more than a set of squares connected along
one or more edges. RMM readers are guaranteed a full measure
of enjoyment with the ideas, games and methods of analysis en-
gendered by this simple idea.

Parnt 1 - Dominses, Pentominocs and (hocker Boards

Many readers of RECREATIONAL MATHEMATICS MAGA-
ZINE may already be familiar with the following problem:

Given a checker board with a pair of opposite corners
deleted (see diagram), and given a box of dominoces, where
each domino covers exactly two squares of the checker board, is
it possible to cover this checker board exactly with dominoes?

CHECKER BOARD with opposite corners deleted cannot be
covered with dominoes.

The answer is “NO”, and a remarkable proof can bé given. Using
the ordinary coloring of the checker board, each domino will cover one
light square and one dark square. Thus n dominoes will cover n light
squares and n dark squares; that is, an equal number of each. But our
defective checker board has more dark squares than hgh{: squares, and
so it cannot be covered with dominoes.

This result is really a theorem in combinatorial geometry, an im-
portant branch of mathematics which is frequently neglected because
there seem to be few general methods, and because systematic rules
will not replace ingenuity as the key to discovery. Many of the design
problems in practical engineering are combinatorial in nature - especially
where standard components or shapes must be fitted together in some
optimum fashion. The aim of this article is two-fold: first, to illustrate
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some of the mathematical thinking which can be used effectively when-
ever problems in combinatorial geometry arise; and second, to serve
as an introduction to the fascinating puzzles and mathematical re-
creations which can be constructed with dominoes and their more
elaborate cousins, the polyominoes.

We define a polyomino to be a simply connected set of squares,
with each square connected to at least one other square along an edge.
(Chess players might call it “rook-wise connected” - that is, a rook
placed on any square of the polyomino must be able to travel to any
other square, in a finite number of moves.) The simpler polyominoces—
all possible shapes covering fewer than five squares—are shown below.

L__] monomino .
square tetromino

[:[] domino r J
D:D straight tromino .

right tromino

T-tetromino

skew tetromino

]

L-tetromino

D:Dj straight tetromino

It is impossible to cover an 8 x 8 checker board entirely with tro-
minoes, because 64 is not divisible by 3. Instead we inquire: Can the
8 x 8 checker board be covered with 21 trominoes and one monomino?

First, suppose we use 21 straight trominoes. We color the checker
board patriotically (see diagram), and
observe that a straight tromino will
cover one red square, one white square,
and one blue square, no matter where
on the board it is placed. Thus 21
straight trominoes will cover 21 red
squares, 21 white squares, and 21 blue
squares. By actual count, our patriotic
coloring involves 22 red squares, 21 white
squares, and 21 blue squares.

If a monomino is placed in the lower left hand corner, the remain-
ing squares will consist of 22 red, 21 white, and 20 blue squares. Thus
the checker board with lower left-hand corner removed cannot be
covered with straight trominoes. By symmetry, no matter which cor-
ner is removed, the rest of the board cannot be covered with straight
trominoes.

¥
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Symmetry arguments are very powerful tools in combinatorial
geometry. For example, if a monomino is placed on any blue square,
or on any white square, or on any square symmetric to a blue square
or a white square, the rest of the board cannot be covered with straight
trominoes!

The only red squares not symmetric to blue or white squares are
the four shown at the left. We have al-

ready proved that if a monomino is
~H placed anywhere on the board except

one of these four squares, the rest of
the board cannot be covered with straight
trominoes. The symmetry principle sug-
gests that these four remaining squares
might be exceptional.

actually are. It is possible to cover the
the checker board with 21 straight tro-
minoes and one monomino, provided that
the monomino is placed on one of the
four exceptional squares.

The figure at the right shows that they j

Our next result is surprisingly different: No matter where on the
checker board a monomino is placed, the remaining squares can al-
ways be covered with 21 right trominoes.

Progressive covering by right trominoes.

Consider first a 2 x 2 board. Wherever a monomino is placed, the
rest can be covered by a right tromino.

Next consider a 4 x 4 checker board. Divide it into quarters.
Each quarter is a 2 x 2 board. Let the monomino be placed in one of
the quarters, say the lower left. The rest of this quarter can be covered
with a right tromino, since the quarter is a 2 x 2 board. In each of the
other three quadrants, if a single square is removed, the rest can be
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covered with a right tromino. But a tromino placed in the center re-
moves one square from each quadrant, and makes it possible to com-
plete the covering.

The 8 x 8 case is treated in the same way. First divide into quad-
rants, which will be 4 x 4 checker boards. The monomino must be in
one of the four quadrants, which can be completed because it is a
4 x 4 board. The other quadrants can be covered if one square is re-
moved from each, again referring back to the 4 x 4 case. And these
three extra squares can be juxtaposed to form a right tromino in the
center of the board. .

The proof just given proceeded by mathematical induction. The
2 x 2 case was very easy, and the 2° x 2% case followed readily
from the 2° x 2° case. Such proofs are very valuable in combinatorial
analysis. Geometrically, they suggest that complex patterns can be
gotten by systematic repetition and combination of simple patterns.

Some theorems about tetrominoes are worth mentioning, although
detailed proofs will be omitted.

It is easy to cover the checker board
entirely with straight tetrominoes, or
with square tetrominoes, or with T-tet-
rominoes, or with L-tetrominoes. This

is clear from the figure. On the other
hand, it is impossible to cover the board,
or even a single edge of the board, with

skew tetrominoes.

It is impossible to cover the checker board with 15 T-te’_r,rominoes
and one square tetromino. This can be proved using the ordinary col-
oring for the checker board.

NN
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It is likewise impossible to cover the checker board with 15 L-tet-
rominoes and one square tetromino. Now, however, the most conven-
ient proof uses the striped shading. It is also impossible to cover the
checker board with one square tetromino and any combination of
straight tetrominoes and skew tetrominoes. The proof in this case
makes use of the jagged shading shown above.
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PENTOMINOES

Now we come to the pentominoes. There are twelve distinct shapes
each covering five squares, so that their total area is 60 squares.

There are numerous ways of placing all 12 distinct pentominoes on
an 8 x 8 checker board at once, and there will always be four squares
left over. Many interesting patterns can be formed by artistically spec-
ifying the positions of the four extra squares. Three of these patterns
are illustrated below.

] N

hkF
H

I
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INTRICATE PATTERNS place all 12 distinct pentominoes
on a single checker board.

Another obvious possibility is to require that the four surplus
squares form a 2 x 2 square (a square tetromino) in some specified
position on the board. (Two favorite locations are the center and the
corner.) This problem is comipletely solved by a very remarkable theo-
rem, which can be proved using only three constructions!

Wherever on the checker board a square tetromino is placed, the
rest of the board can be covered with the twelve pentominoes.

At first glance, there are 49 possible locations for the square tet-
romino. The bold dots in the first figure designate the 49 possible
locations of the center of the 2 x 2 square. However, applying sym-
metry principles, the problem reduces to the ten positions indicated by
the dots in the second figure.

The 49 possible positions for The 10 non-symmetric posi-
the center of a square tet- tions for a square tetromino
romino on the checker board on the checker board

—_
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A clever stratagem is to combine
the square tetromino with the V-pento-
mino to form a 3 x 3 square as shown
to the right.
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THREE CONSTRUCTIONS which suffice to prove that no
matter where a 2 x 2 square is removed from the checker

board, the remaining 60 squares can be covered by the 12
distinct pentominoes.

Then the three diagrams, shown above, complete the solution,
because any of the ten positions for the square tetromino can be real-
ized by first selecting the correct diagram, and then the correct posi-
tion for the 2 x 2 square within the 3 x 3 square.

It is also natural to inquire: “What is the least number of pen-
tominoes which will span the checker board?” That is, we attempt to
place some of the pentominoes on the board in such a way that none of
the remaining pentominoes can be added.
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Many other patterns can be formed using the twelve pentominoes,
as the reader may attempt for himself. These include rectangles of 6 x
10, 5 x 12, 4 x 15, and 3 x 20. The hardest of these is the 3 x 20
rectangle, and the solution given here is believed to be unique, except
for the possibility of rotating the central portion (between the dark
lines) by 180°.

EEilier

The 12 pentominoes form a 3 x 20 rectangle.
Is this construction unique?

e

The minimum number needed to
span the board turns out to be 5, and
one such configuration is shown at the
right.

RECREATIONAL MATHEMATICS MAGAZINE

Professor R. M. Robinson, of the University of California at
Berkeley, has proposed another fascinating pentomino problem, which
he calls the “triplication problem.” It goes as follows:

Given a pentomino, use nine of the other pentominoes to construct
a scqle model, 3 times as wide and 3 times as high as the given pen-
tomino.

Solutions are shown here for the V-pentomino. and the X-pen-
tomino.

TRIPLICATION of the V-pentomino and the X-pentomino.

The reader is invited to test his ingenuity with the triplication of
the other pentominoes.

Besides their fascination as a puzzle, pentominoes on the checker
board also make an exciting competitive game. Two or more players
take turns placing a pentomino of their choosing on an initially empty
checker board. The first player who is unable to find room on the board
for any of the unused pentominoes is the loser. (If all twelve pieces
are played - rarely accomplished - the player who placed the twelfth
piece wins.) The game will last at least five and at most twelve moves,
can never result in a draw, has more possible openings than chess,
and will intrigue players of all ages. It is difficult to advise what stra-
tegy should be followed, but there are two valuable principles:

1. Try to move in such a way that there will be room for an
even number of pieces. (This assumes only two are playing).

2. If you cannot analyze the situation, do something to compli-
cate the position, so that the next player will have even more
difficulty analyzing it than you did.

A pentomino problem of a rather different nature is the following:
A man wishes to construct the twelve pentominoes out of plywood.
His saw will not cut around corners. What is the smallest plywood
rectangle he can buy from which he can cut all 12 pentominoes? (The

U-pentomino, ] , will require special effort. Assume that it

must be cut as a hexomino, and finished later). The best
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answer is not known, but a 6 x 13 rectangle may be used. In the
illustration, the darker lines are to be cut first, starting from the sides
and working inward. .

THE TWELVE PENTOMINOES can be cut from a 6 x 13
rectangle, using a saw that does not turn corners.

There is a lesson in plausible reasoning to be learned from the pen-
tominoes. Given certain basic data, we labor long and hard to fit them
into a pattern. Having succeeded, we believe the pattern to be the
only one that “fits the facts,” indeed that the data are merely mani-
festations of the beautiful, comprehensive whole. Such reasoning has
been used repeatedly in religion, in politics, even in science. The pen-
tominoes illustrate that many different patterns may be possible from
the same ‘“data”, all equally valid, and the nature of the pattern we
end up with is determined more by the shape we were looking for
than by the data at hand. It is also possible that for certain data, no
pattern of the type we are conditioned to seek may exist. This will be
llustrated presently, by the hexominoes.

Beyond the 12 pentominoes, there are 35 distinct hexominoes and
108’ distinct heptominoes. No one has yet succeeded in obtaining an
expression or formula for the exact number of n-ominoes as a function
of n. Combinatorial problems of this sort are often tantalizingly dif-
ficult.

The 35 hexominoes cover a total area of 210 squares. It is natural
to attempt to arrange them in rectangles, either 3 x 70 or 5 x 42 or
6x350r 7x30o0r 10 x 21 or 14 x 15. All such attempts, however,
are predestined to fail. For in each of the rectangles one could intro-
duce a checker board coloring, with 105 light squares and 105 dark
squares, an odd number of each. There are 24 hexominoes which will
always cover three dark squares and three light squares (an odd num-
ber of each). The other 11 hexominoes always cover two squares of
one color and four of the other, an even number of each. The 35 hex-
ominoes are illustrated on the next page according to their checker-
board-covering characteristics.

There are an even number of “odd” hexominoes and an odd num-
ber of “even” hexominoes. Since “even times odd = even” and “odd
times even = even,” the 35 hexominoes will always ,cover an even
number of light squares and an even number of dark squares. But the
number of light (or dark) squares is 105 for any of the rectangles in
question, and 105 is odd.

—10—
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It is noteworthy that the same checker board coloring used to
prove the simplest result about dominoes also serves to prove a far
more complex theorem about hexominoes. The underlying theme of
the checker board coloring is “parity check,” a simple yet powerful
mathematical tool based on the obvious fact that an even number is
never equal to an odd number. The use of colors is a valuable aid to
the intuition — objects colored differently will seldom be confused.
And sometimes, as in the straight tetromino problem, the colors vividly
proclaim a solution which might otherwise have been overlooked.
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For whole numbers,. it may be assumed that the numbe i i
Y ' r cannot be h
zTeﬁg;erﬁosldd%cm;al,t the numbglr could possibly start with one or mofénzxgs.
> shou e just one possible answer. A i
the digits in the table shogld be 245. or. As a negative check, the sum of all

! 2 |3 v 5 |6 7
8
9 |0 n 2
i3 4 3
16 n
(8 ] 20 2]
22 23 24 28
26 a7
28

HORIZONTAL
1. A square whose successive digits 3. A perfect square.
differ from each other by 1. 4. The first two digits form a num-
8. A cyclic arrangement of 04268. ber which is a multiple of 5. The
9. Two consecutive digits greater last two digits form a number
than 5 which form a number three halves of the number form-
which is twice a square. ed by the first two digits.

11. The value of x (approximation) 5- A multiple of 149.

in 10 = 3. 6. A cube has a small portion cut off
12. A number which is the sum of all each of its corners. The number
its factors that are less than the of edges of the resulting figure.
number (but including 1). 7. A square such that the digits in
18. The number of the “beast” in the reverse are also a square. The
Apocalypse. smaller of the two.
15. The sixth power of a number. 10. The number of seconds in a day.
16. One hundred less than a square.  12- The number formed by the first
17. The number of permutations of 6 three digits is 24 less than four
times the sum of the last two

things taken three at a time.
18. An odd multiple of 5. digits.
20. A multiple of five which is the 14- A perfect square.

sum of a two digit number whose 15. One greater than a factorial,

digits are the reverse of each other 18- A square with the first two digits
22. The number greater than 50 which the samie and the last two digits

is the product of three of the the same.

primes less than 10. 19. A number for which the first and
28. The number of spaces formed in third, the second and fourth dig-

a plane by 24 lines, no three of its are the same.
which go through a point and no 21. The number has factors 2 and 5,

two of which are parallel. while the first three digits are odd

25. A prime number which is the num- numbers in sequence.
ber of sides of a regular polygon. 25 The twenty-fourth term in the

26. A cyclic arrangement of 0, 1, 2, series 1, 3, 6, 10, 15 . . .
24. A square.

3, 4.
28. A factorial. 26. Qq odd square whose second dig-
VERTICAL & éist.one more than twice the first
1. The square of No. 2 vertical. 27. The number of ways in which two
2. The rec1procal gf the probability dice can_come up (considering
of throwing 2 with a pair of dice. them as distinct entities).
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Electronic Abotractions: Mathematics in Design
5}/ Ben . [aﬁoaé‘t]

Electronics, photography, art and mathematics are the unique
combination shown in the Electronic Abstractions illustrated in these
pages. The electronic abstractions are in a way an art form for the
space age, both in their visual impact and in the means by which they
are created.

The electronic abstractions, or oscillons, as they are also called,
are actually abstract art forms in light. They appear as glowing traces
on the screen of a cathode-ray oscilloscope, either as standing figures
or in rhythmic motion. They are created by the combination and con-
trol of various basic electrical wave forms.

The oscilloscope is a widely-used electronic test and indicator
instrument. It resembles a television receiver somewhat in appearance,
with its fluorescent screen, and with many more controls. (A TV set
is actually a form of an oscilloscope, so are radarscopes.) It is pri-
marily used to display electrical waveforms, from which technicians,
scientists, and others, can determine frequencies, voltages, and other
functions of electrical circuits. Oscilloscopes are also used as indicators
in certain types of analogue computers.

The basic wave forms the ’scope shows may be originated by so-
called oscillators, or other wave form generators—mostly electronic
in nature. These forms are mathematical curves. The fundamental one
is the sine wave, a sinuous curve which is identical with the sine curve
of trigonometry. The other wave forms are the square waves, saw-
tooth, symmetrical triangular, logarithmic, pulsed, and so on.

While the sine wave is a comparatively simple wave, electronically,
the square waves and sawtooth waves are much more complex. By
mathematical analysis, they are made up electronically from sine waves.
The square wave is the resultant of all the odd harmonics composing
it. (The harmonics are the integral multiples of the basic wave, in-
creasing in number to infinity. When these are added together geo-
metrically, they will form the more complex wave.) The sawtooth is
the resultant of all the harmonics of the basic sine wave, and the
symmetrical triangular wave of all the even harmonics.

Just as simple geometric elements, such as lines, angles and curves,
may be built up into complex designs with an aesthetic appeal, so
too these basic electrical waves may also be combined into more in-
tricate shapes and figures.

For example, the sine wave may be woven into the attractive
Lissajous figures. In the oscilloscope there are two inputs, the vertical
and the horizontal. By putting sine waves of different frequencies

—14—
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Sine Wave Sawtooth Wave  Square Wave Lissajous Figure
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(numbers of waves per second) into the H and V sections, these bas-
ket-weave figures result. Sawtooth waves will give patterns with a
diamond-like effect.

Using other electrical circuit combinations, we can get ellipses,
circles, cycloids, rosettes, roulettes, spirals, and so on. All of these
are similar or identical to mathematical or geometrical curves, and
may also be simple elements of decorative design, too.

The tracings of pendulums are related to Lissajous figures, but with
a periodic time change in their swings. The sand bob, a pendulum with
a cavity for sand, and a tiny hole at the bottom, was used even in
ancient times to trace these figures. Later, pen machines were invented
to produce them. Now they can easily be traced by photography—a
swinging light over a camera or photographic paper (in a darkened
room) will produce a variety of pendulum patterns. The oscilloscope
may also show similar forms.

Other mathematical curves resembling those traced by the so-
called geometric lathe may be displayed on the oscilloscope screen.
The geometric lathe is an intricate and costly machine used to engrave
the beautiful lacework seen on currency and securities (to foil counter-
feiters, incidentally). It produces these designs by means of a com-
bination of curve and rectilinear motions, in precise arithmetical
ratios.

By the use of a wide variety of electronic setups an almost in-
finite number of patterns may be created. However, in order to get
those with a definite art value, or appeal as abstract design, selective
control and combination must be exercised by the operator or the
artist doing this work. Some of the simpler patterns, of course, are
similar to those obtainable in other ways, or which might be drawn
by hand.

In themselves, the electronic abstractions or oscillons developed
by this writer represent a more advanced technique as an art form.
They employ some specialized circuits and electrical arrangements not
used in normal testing, research or other electronic procedures, besides
the basic wave form generators, oscillators, amplifiers, modulation
circuits, deflection circuits, and so on. For some of the more involved
figures a large number of these elements may be combined.

When a number of factors, such as frequencies, voltages, cur-
rents and magnetic field strengths are concerned in the creation of an
electronic abstraction, a variation of any of them may produce a quite
different figure. It may be changed in over-all shape, or in texture.
It may present a solid appearance (the result of using high-frequency
curves) or a more open effect of lines, as with low frequency waves.
In some cases as many as 75 different factors as these may be in-
volved in the creation of an oscillon, or electronic design.

Some of the oscillons have an almost sculptural or third-dimension-
al appearance, as in a projection of a geometric solid or higher order
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curved surface. This may be due to what are called phase differences
of the sine waves composing them. Two sine waves of equal frequency
and voltage, if put into the oscilloscope 90° out of phase will produce a
circle on the screen; if put into the oscilloscope 45° or 135° out of phase,
they will result in an ellipse. The more intricate combinations of ad-
ditional waves result in other figures with an apparent depth di-
mension, if phase differences like these (and others) are introduced as
factors.

Normally the figure may be seen as a glowing image, as a white (or
green, or blue) trace on the oscilloscope screen. It may be stationary
or in motion, parts of it pulsating in and out, or rotating, or moving
back and forth on the screen. Actually, the entire figure is traced by
one point of light on the screen, from the end of the electron beam
within the cathode ray tube, just as in a television set. (However, in
some patterns, parts of this trace may be darkened or deflected off
the screen, so they will not appear in the finished composition.)

After a figure is finally composed on the screen by the connection
of the different input circuits and the setting or changing of the various
controls on them, it is then photographed, if of possible artistic value.
No other lighting is directed on the ’scope screen when these figures are
photographed. Fast films and high speed camera lenses are used;
special development techniques are also sometimes necessary. Be-
cause of these factors, and others, the photographs of the traces are
not always as sharp and well-defined as pen drawings would be. (Over
10,000 oscillons in black and white or color have been photographed
by this writer so far.)

Color may be added to the oscillons by means of special filters
ahead of the white trace cathode ray tube. To produce the multi-color
effects in a pattern, these filters may be in motion. Generally, a cir-
cular transparent disc with two or three color segments is rotated
ahead of the screen. This is somewhat similar to one of the early color
television systems. As the different color segments move across the
face of the screen, the lines or masses in the patterns take on different
tints or hues.

The oscillons might be called a form of visual music as they are
created by means of electrical wave forms in light as music is created
by means of sound wave forms in air. The designs are as abstract and
mathematical as music is, for the most part, abstract and mathematical.
The pulsations of the moving patterns on the screen have a graceful
and rhythmic quality reminding one of the gyrations of ballet dancers.

Another interesting aspect of the oscillons is that they could pos-
sibly be called a fourth-dimensional art form, more than any other.
In the pattern the horizontal and vertical factors (x and y) represent
two dimensions. The beam tracing the pattern (which also may be
varied for light and dark effects, as in television), is the third space
dimension (z). But, the fourth, or time demension (t), is also of vital
importance in the creation of oscillons. The basic frequencies compos-
ing them have time as a factor, measured as so many cycles per second.
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In relativity mathematics or Minkowski geometry time, the fourth
dimension, is directly related to the other three of space as x, y, 2, t.

The electronic abstractions composed by this writer represent the
most varied and complex development of the technique of using elec-
tronic oscillograms for art yet shown in America or abroad. However,
the possible use of oscilloscope patterns for applied design was first
suggested by an engineer in 1937 (C. E. Burnett in Electronics mag-
azine). A few others have experimented to a limited degree with the
idea, including the production of a couple of abstract movie -shorts
using ’scope traces, some even with music. Y

This writer actually first became interested in the possibilities
of using electronic wave forms for -creating design as the result of
studies of various mathematical curves, including polar curves, pendu-
lum tracings, magic square line patterns, as well as many other geo-
metric forms in nature - crystals, diatoms, etc. While the creation and
application of this new art form is'not in itself just a hobby or re-
creation, it did indirectly have its beginnings for him in experiments
with decorative designs based on magic line patterns from magic
squares.

The primary appeal of the abstractions is similar to that of any
art work or decorative design. They have been widely shown in travel-
ling art exhibits in black and white and color photographs which have
been circulated by Sanford Museum of Cherokee, Iowa. More than
50 places in the United States, and a few in France, have displayed
them since 1953; more are scheduled for the future. Many of these
have been college and university art departments, as well as museums
and art centers. The mathematics department of Vassar College, a
science seminar at Colorado College, the Cranbrook Institute of Science,
and the Institute of Design at the Illinois Institute of Technology
(Chicago) as well as Cooper Union, New York, and others, have shown
these displays. '

The electronic abstractions have been used in several ways in ap-
plied art, especially in advertising layouts. One national advertise-
ment for electronics in copper featured an oscillon in color. Others
were used in advertisements for typewriters, electrical generators,
drugs, and even among other things - perfumes!

For the mathematician or mathematical hobbyist, the abstractions
should have some appeal. Their precision of line, tHeir use of the curves
of geometry and trigonometry, and their various. harmonies and
rhythmic sequences, all have definite mathematical significance. Yet,
they still have an emotional attraction beyond the cold tracings of
an algebraic curve, as they are deliberately composed for a truly aes-
thetic appeal, as with all art creations.

i
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Cncles and

How can a circle know it must -
Obedient to a cosmic trust -
Keep radius and circumference
As fixed related measurements?

For crowns and pies and wheels and rings
And other wholly rounded things
Diameter we multiply

By that strict ancient wizard =

To equal the perimeter

Or else an error we infer.

And circles thin or circles square

Cannot be circles anywhere.

Even an oval will not do.

It must be round. It must be true.
It must recall three point one four
And endless lines of digifs more -

The = to which eternally

All circles owe their fealty.

And if you disobey this rule

We have to keep you after school
Until like Euclid you have found
That circles know their way around.

~— Thomas John Carlisle
(from New York Herald Tribune
with permission)
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The purpose of this article is to mathematically describe, and
compare, the Christian, Mohammedan, and Jewish Calendars, with
emphasis on those topics which are of interest in Recreational Mathe-
matics. The author hopes that the reader will gain, in addition, an
appreciation of the “other fellow’s” point of view.

Relatively speaking, the sun and the moon may be regarded as
the hour and minute hands of a huge sky clock. The accuracy with
which the three calendars follow the motions of the sun and the moon
are indicated in the table below.

Average length of
the year in days

Average length of
the month in days

SOURCE Exact Decimal Exact Decimal
Astronomical Observations .

of the Sun and the Moon 365.2422 29.5306
Christian Calendar 365° /00 365.2425 302097 /,500  30.4369
Mohammedan Calendar 35411/,  354.3667 29"/, 29.5306
Jewish Calendar 36524311 /.06 365.2468 2918753 /, 000 29.5306

Except for the date of Easter, the Christian Calendar does not
follow the motions of the moon. The Mohammedan Calendar, on the
other hand does not follow the motions of the sun.

The Christian calendar contains a regular year of 365 days and a
leap year of 366 days, the latter occurring 97 times every 400 years.
Leap years are spaced every fourth year except when the year is divis-
ible by 100 but not by 400. (Thus 1900 was not a year year, but 2000
will be).

The number of days in a 400 year cycle is (400)(365) +97 =
146,097 and this is exactly 20,871 weeks. The Christian_ calendar
therefore repeats itself every 400 years; but 400 is not divisible by 7,
with the result that a given day of the year cannot occur with
equal frequency on every day of the year. As an example, the table
below contains an actual count of December 25 over each -400 year
cycle. The table shows that the probability that Christmas will fall on
a Sunday is %/4,=0.1450 which is greater than 1 in 7 (=0.1429: See
Reference 1). An even more interesting result is the fact that the 13th

Day of the Week Frequencies for Each 400 Year Cycle

The 13 of
December 25  the Month February 29

Sunday 58 687 15
Monday 56 685 13
Tuesday 58 685 15
Wednesday 57 687 13
Thursday 57 684 14
Friday 58 688 14
Saturday 56 684 13

TOTAL 400 4800 97
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of the month falls on a Friday more than on any other day of the
week (2). On the other hand one textbook on statistics (3) claims
that the probability of a leap year containing 53 Sundays is 2/;. This
is incorrect, a leap year contains 53 Sundays if February 29 falls on
either a Tuesday or a Wednesday. The table above shows the prob-
ability to be %1%/y; — 28/,

The Mohammedan calendar contains either a regular year of 354
days or a Leap year of 355 days. The twelve months of the year each
have 30 days and 29 days alternately except that during a leap year
the last month contains 30 days instead of 29. In every cycle of 30
years there at 11 leap years. These fall on the 2nd, 5th, 7th, 10th, 13th,
16th, 18th, 21st, 24th ,26th and 29th years o fthe cycle. The first day
of the Mohammedan year 1381 was the first day of a new cycle of 30
years and corresponded to June 15, 1961.

The day of the week on which an Mohammedan date occurs may
be found as follows. First calculate

Q = 4Y + [11(Y — 1)/30 + 1.49] + [(1.5)(M — 1) + 05] + D

where Y is the Year, M is the Month (in numerical or-
der) and D is the day of the month. In this equation
the brackets denote the largest integer function, that is to say, the
fractional part of the number must be discarded and only the integer
part retained. (For example [2.73]=2.) Then divide Q by 7 and
note only the remainder. If the remainder is zero the day falls on Sat-
urday; if the remainder is one, the day falls on Sunday; etc . . . if
six it falls on Friday.

As an example, consider the 13th day of the fifth month of the
Mohammedan year 1382. We have Y — 1382, M = 5, D =13. So
that Q@ = 6054 by using the formula above. When Q is divided by 7,
we get a remainder of 6 which corresponds to Friday.

We now proceed to find the date in the Christian calendar on
which the above Mohammedan date occurs. For this purpose we use
the following general formula (4)

C = 0.97022298 Y + 621.57736

where C and Y denote the Christian and Mohammedan years respec-
tively including the fractional part represented by the month and the
day of the month. 1382 is the second year in a cycle of 30 years, and
is a leap year of 355 days. The 13th day of the fifth month is the 131st
day of the year, thus M=13821%*/,;;—1382.369014. Substituting this
value in the formula we get C = 1962.78354. Now (365) (0.78354) —
285.992 or the 286th day of 1962. The 286th day is Oct 13th, but this
day falls on a Saturday in 1962. Due to leap year variations in the
two calendars the above formulas may be in error by a day or two,
hence we adjust our calculation by one day and conclude that the 13th
day of the 5th month of the Mohammedan year 1382 will fall on Fri-
day, October 12, 1962.
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Since the Mohammedan year is numerically smaller than the
Christian year but only 97% as long it will eventually catch up. This
will occur on the first day of the fifth month of 20,874 at which time
the date in both calendars will be the same.

The Jewish calendar is divided into cycles of 19 years in which
the 3, 6, 8, 11, 14, 17 and 19th years of the cycle contain 13 months and
the others contain 12 months. A twelve month year may contain
either 353, 354 or 355 days and a thirteen month year may contain
either 383, 384, or 385 days. The months contain either 29 or 30 days
following a pattern that depends on the number of days in the year
as shown in the table below.

353 354 355 383 384 385

Days in the Year

Month I 30 30 30 30 30 30
II 29 29 30 29 29 30

III 29 30 30 29 30 30

v 29 29 29 29 29 29

A" 30 30 30 30 30 30

VI 29 29 29 30 30 30

(Leap Month) Via 29 29 29
ViI 30 30 30 30 30 30

VIII 29 29 29 29 29 29

IX 30 30 30 30 30 30

X 29 29 29 29 29 29

XI 30 30 30 30 30 30

XII 29 29 29 29 29 29

The length of the month is taken as exactly 29'3753,., days.
Thus twelve months would be 354%/,,,, days, and thirteen
months would be 383%%2%%/,,,, days, and a full cycle of 19
years would be 235 months or 6,93917875/,5,,, days. The year 1 is assum-
ed to have begun on October 7, 3761 B.C., a Sunday night, at
204/ 0soths of an hour after 11 p.m. Three hundred and one cycles later
brings us to the year 5720 which began a new cycle of 19 years on
October 2, 1959, a Friday, at °/;0s of an hour after 1 p.m.

The New Year will often be observed not on the day on which the
“calendar” new moon occurs, but one or two days later. This post-
ponement is based on religious considerations and follows these rules:

1) All “calendar” new moons which fall on Sunday, Wednesday,
or Friday are postponed to the next day.

2) All “calendar” new moons which fall after 12 noon on any
day are postponed to the next day, but if the next day is Sunday,
Wednesday, or Friday it is postponed two days.

3) All “calendar” new moons which fall on a Tuesday of a non-
leap year at 2°*/,o5th of an hour after 3 a.m. or later are postponed
to Thursday.
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4) All “calendar” new moons which fall on a Monday in the year
following a leap year at °%/,.th of an hour after 9 a.m. or later, post-
pone to Tuesday.

With these rules we see that although the “calendar” new moon
of the year 5720 took place on October 2, 1959, this was a Friday, and
also after 12 noon, and consequently its observance was postponed to
Saturday, October 3, 1959.

REFERENCES

(1) Mathematics Magazine, Sept. 1957, P. 51; Problem proposed by
the Author.

(2) Otto Dunkel, Memorial Problem Book, American Mathematical
%\B/Ionthly, Aug. 1957, Part II, p. 53; problem proposed by B. H.
rown.

(3) “Mathematical Analysis of Statistics” by C. H. Forsyth, John Wi-
ley and Sons, 1924.

(4) This formula differs but slightly from the formula originally pro-
posed in the Calendar and Chronology articles in the Encyclopedia
Britannica.

(5) The Jewish Encyclopedia, article on Calendar.

(6) “Elementary Number Theory”, Uspensky and Heaslet, McGraw-
Hill, 1939. This book contains an excellent account of the deter-
mination of the date of Easter.
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Fhe Vert 95 Prime Humbers - 147F7 to 719577

No errors were found in the June listing of Prime numbers. The
following list was taken from D. N. Lehmer’s “List of Prime Numbers
from 1 to 10,006,721” and then proofread against that list and com-
puter calculated lists supplied by Vernon J. Shipley of Kitchener,

Ontario and Sidney Kravitz of Dover, New Jersey.

14741
14747
14753
14759
14767

14771
14779
14783
14797
14813

14821
14827
14831
14843
14851

14867
14869
14879
14887
14891

14897
14923
14929
14939
14947

14951
14957
14969
14983
15013

15017
15031
15055
15061
15075

15077
15083
15091
15101
15107

15121
15131
15137
15139
15149

15161
15173
15187
15195
15199

15217
15227
15233
15241
15259

15263
15269
15271
15277
15287

15289
15299
15307
15315
15319

15%29
15351
15349
15359
15361

15373
15577
15383
15391
15401

15413

15569
15581
15583
15601

15881
15887

15901
15907
15913

15919
15923
15937
15959
15971

15975
15991
16001
16007
16033

160

16021
16063
16067
16069

16073
16087
16091
16097
16103

16111
16127
16139
16141
16183

16187
16189
16193
16217
16223

16229
16231
16249
16255
16267

16273
16301
16319
16335
16339

16349
16361
16363
16369
16381

16411
16417
16421
16427
16433

16447
16451
16453
16477
16481

16487
16493
16519
16529
16547

16553
16561
16567
16573
16603

16607
16619
16631
16633
16649

16651
16657
16661
16673
16591

16693
16699
16703
16729
16741

16747
16759
16765
16787
16811

16823
16829
16831
16843
16871

16879
16883
16889
16901
16903

16921
16927
16931
16937
16943

16963
16979
16981
16987
16993

17011
17021
17027
17029
17033

17041
17047
17053
17077
17093

17099
17107
17117
17123
17137

17159
17167
17183
17189
17191

17203
17207
17209
17231
17239

17257
17291
17293
17299
17317

17321
17327
17333
17341
17351
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17359
17377
17285
17387
17389

17393
17401
17417
17419
17431

17443
17449
17467
17471
17477

17483
17489
17491
17497
17509

17519
17539
17551
17569
17573

17579
17581
17597
17599
17609

1762%
17627
17657
17659
17669

17681
17683
17707
17713
17729

17737
17747
17749
17761
17783

17789
17791
17807
17827
17837

17839
17851
17863
17881
17891

17903
17909
17911
17921
17925

17929
17939
17957
17959
17971

17977
17981
17987
17989
18013

18041
18043
18047
18049
18059

18061
18077
18089
18097
18119

18121
18127
18151
18133
18143

18149
18169
18181
18191
18199

18211
18217
18223
18229
18233

18251
18253
18257
18269
18287

18289
18301
18307
18311
18313

18329
18341
18355
18367
18371

18379
18397
18401
18413
18427

18433
18439
18443
18451
18457

18461
18481
18493

18503
18517

18521
18523
18539
18541
18553

18583
18587
18593
18617
18637

18661
18671
18679
18691
18701

18713
18719
18731
18743
18749

18757
18773
18787
18793
18797

18803
18839
18859
18869
18899

18911
18913
18917
18919
18947

18959
18973
18979
19001
19009

19013
19031
19037
19051
19069

19073
19079
19081
19087
19121

19139
19141
19157
19163
19181

19183
19207
19211
19213
19219

19231
19237
19249
19259
19267

19273
19289
19301
19309
19319

19333
19575
19579
19381
19387

19391
19403
19417
19421
19423

19427
19429
19433
19441
19447

19457
19463
19469
19471
19477

19483
19489
19501
19507
19551

19541
19543
19553
19559
19571
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Ve Workd of Large Wumbers by Buothen Alfecd

Today, we are living in an age of large numbers. The average
citizen peruses statements about an eighty billion dollar budget and
a close to three hundred billion dollar debt; he reads about the billions
of years the universe has been in existence and the countless miles it
extends into space.

And yet, it is very difficult for him to form any adequate idea of
just what these numbers mean. What, for example, is a billion dollars?
One illustration that seems to bring the matter home rather neatly
starts with a million dollars worth of one-thousand-dollar bills. Neat-
ly pressed together, one thousand of them would form a pile 8 inches
high. Using the same type of thousand-dollar bill, a billion dollars
would constitute a column 66624 ft. high which is taller than the
Washington Monument by more than a hundred feet! Yet, mathe-
matically speaking we are talking about 10° which is quite a moderate
figure and hardly deserves the distinction of being called large.

The poet has his idea of the large number: as numerous as the
stars of the heavens or the sands of the seashore. The former is really
a misconception since the human eye can only see about 3,000 stars
at any one time even with good visibility. The sands of the seashore
offer greater possibilities. But why stop with the seashore? Let us
consider how many grains of sand could be formed from the entire
earth. Sand may be defined as a particle ranging in size between 2 mm.
and 0.1 mm. in diameter. Let our sand grain be 0.5 mm. in diameter.
Its volume would then be .06545 cubic mm. Considering the earth as
a sphere of approximately 4,000 miles radius, the number of grains of
sand that could be formed from its substance would be 1.7 103,

This is large. But suppose we were to make sand of all the ma-
terial in the universe or even better consider the number of atoms or
electrons to be found there. Evidently these figures would be educat-
ed guesses. As one example of the order of magnitude involved, we
may quote Eddington’s estimate of 107* as the number of electrons
in the universe. This is certainly a sizable number, but it does not
arrive at what is known as the googol or 10%°°,

If we think of the age of the universe, we have present-day esti-
mates of the order of 10 billion years. Even if we were to translate
this very long time into seconds, the number we obtain is only
3.16 X 10%".

Consider finally the size of the universe. With revised distance
scales, one estimate is that we have now explored out to 1.6 billion
light years. A light year being the distance light travels at 186,284
miles a second in one year and a year being approximately 365.26
days, the distance in miles in a light year is approximately 5.88 X 102,
The present radius of the known universe, 1.6 billion light years, would
thus be a figure of 9.4 X 10 miles. Going down to the very small unit
of distance known as, the Angstrom (10 centimeter) in terms of
which light waves are measured, this number would become 1.5 10%
Angstroms.
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Astronomical numbers are, of course, impressive, especially in
our space age when man has ideas of touring the universe. But con-
sider the problem involved. Our fast planes today are moving about
600 miles per hour which is a mere 1/6 mile per second! We would
have to go much faster in space to get anywhere, especially since the
nearest star after the sun is 4.3 light years distant. This is about 25.3
trillion miles. Suppose we have a space ship which is doing 1,000,000
miles an hour, the equivalent of 278 miles a second. It would still take
about 2886 years to go one way to the close star, Alpha Centauri.

The numbers pertaining to the universe, whether they concern
time, quantity of matter or distance are hard to visualize. But as
mathematical quantities we may refer to them as moderately large.
This, of course, is purely a matter of relationship. From the mathe-
matical standpoint, it would be very difficult to say what is large
and what is not. For no matter to what proportions we build a number,
as long as it is finite, its relation to infinity is zero!

MATHEMATICALLY LARGE NUMBERS

We shall now try to range beyond our astronomical numbers
into what may be called mathematically large numbers. One such
quantity has already been mentioned, namely, the googol. A still
larger number is the googolplex which is defined as 10 to the googol
power, written as 1(Qsecsol,

It has been pointed out that the largest number one can form

using only three digits is 99° which is equal to 987420482 In gpite of
the huge size of this number (it has 369,693,100 digits) a few things
are known about it. The logarithm of this number has been calculated
to 80 decimal places and the first 60 and last 26 digits of the number
are known (the middle 369,693,014 are unknown - and who cares?).

Another interesting approach is the following. We make use of
repeated logs and antilogs to “tame” these large numbers and bring
them down to convenient representations. To simplify our notation,
let us agree to write:

log [log (log N)]
as log® N and

antilog [antilog (antilog N)]
as log-®* N. With this notation, we see that:

log? (googol) = 2

or googol — log22

Evidently, with this notation we can write unimaginably large numbers
with the greatest of ease. For example, log2°25. (Maybe I shouldn’t

have written this. Somebody may try to expand this number and end
up in an institution for the mentally deranged.)
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The numbers from one point of view may be compared to the
molecules of the atmosphere that surrounds the earth. The molecules
of the number world are the primes. Just as our atmosphere becomes
rarer and rarer the higher we ascend until we get out into space where
particles are really sparse, so likewise as we go out farther and farther
in the world of numbers, primes become more of a rarity. Here are
some interesting statistics:

At 100,000 there are 8 or 9 primes per hundred numbers

At 10,000,000,000 there are 4 or 5 per hundred

At the Googol there are only 4 or 5 primes per thousand
At about 10%* there is one prime per thousand

At 10%40 there is but one prime per hundred thousand

In other words, we can arrive at a point in the number universe where
the primes are just as rare as we may care to have them: one in a
million, one in a billion, and so on.

As a matter of fact, it is not hard to find the interval of, say,
1000 consecutive whole numbers which contains no prime number at
all. We go about it this way:

10011=1x2%X3X .... X1000x1001

1001! + 2 is divisible by 2, because 1001! is

1001! + 3 is divisible by 3, because 1001! is
and so on until

1001! 41001 is divisible by 1001.

So there is a sequence of 1000 consecutive whole numbers, none of
which is prime. The only problem involved in actually writing out
these 1000 numbers is the fact that 1001! itself has 2571 digits!

LARGE PRIMES

Mathematicians over the ages have given a great deal of attention
to the problem of determining which numbers are prime. In spite of
all the efforts of the greatest mathematicians, however, there is still
no easy way of solving this problem. Apart from special methods which
apply to numbers of certain forms, to ascertain whether a given num-
ber is a prime, one must divide it by all the primes up to its square
root or use other processes which involve much the same quantity of
calculation. Suppose, for example, we have available the List of Prime
Numbers by D. N. Lehmer from 1 to 10,006,721. For simplicity, let us
call this latter figure 10°. The largest prime that could be verified
with the aid of this table would then be 104 To make this verification,
the straightforward method would be to divide the number being
tested by all of the 665,000 primes in Lehmer’s table !

Perhaps with this background, one can appreciate the magnitude
of the accomplishment of determining that a number of the order of
10°%¢ has been found to be a prime. How was it possible to accomplish
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this feat? For one thing, special numbers were considered, in this case,
a Mersenne number 232" —1. Mathematicians by studying the nature
of these numbers have been able to delimit the type of factor they
may have and thus simplify the calculations. For another, modern
calculating equipment was employed. To give some idea of the gain
in power, let it be noted that in one investigation, the author asserts
that the machine did in one minute what it would take a person using
a desk calculator over a year to accomplish. Yet, to discover the very
large prime with 969 places, the computing machine required 5% hours.

It has been pointed out that with available equipment and meth-
ods we have for the moment come to the practical limit of deter-
mining large primes even of a specialized nature. Need it be said that
mathematicians have not as yet discovered a formula that will always
yield a prime number. If we had such a formula, there would no longer
be a largest prime. But as matters stand today, it appears that the
concept of a largest prime will be with us for a long time to come.

CHART OF THE NUMBER UNIVERSE (On The Next 2 Pages)

Finally, to provide a picture of our universe of large numbers,
a chart has been prepared which compresses numbers into a small
space by means of a logarithmic scale. Along vertical lines, the follow-
ing interesting sequences are displayed:
(1) The Mersenne numbers: M,=2r—1
(2) The Fermat numbers: F,—22" 41
(3) Factorials: n!=(1)(2)(8)(4) ... (n—1) (n)
(4) The large primes, M standing for Mersenne numbers, F for
Fermat numbers and R for Robinson numbers of the form
Ra= (k) (2*) +1
(5) The density of the primes.
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The Hevakedna Prolblew:

[{y goﬁn ndC[s[[an

If one were to interrupt a group of crap-shooters during a game
to ask whether their dice could be made in some other form, he would
undoubtedly receive the treatment that such an off-beat question mer-
ited. However, if one of the players happened to be interested in
mathematics - aside from the mathematics of chance - he might pause
to think it over: for the ordinary die, or cube, with its six faces is
only one member of a group of solids characterized by the fact that
each of them has six faces. The group is called the Hexahedra, and
the question of our imaginary busy-body can be stated more elegantly:
How many plane-faced solids exist with just six faces, irrespective of
type of polygonal face, and number of vertices?**

This paper proposes an approach to the problem of how many
six-faced variations there are. Some readers may enjoy applying this
method to other groups of polyhedra, each group having the same
number of faces, and some may be able to obtain a general answer
for n-hedra.

The schematic drawings of the solids which are used throughout
are ‘Schlegel diagrams’, named for the 19th century German mathemat-
ician who invented them. They are a most convenient way of showing
the three components of face, vertex, and edge of polyhedra, and their
relation to one another. They do not, however, give us information
of a ‘metrical’ nature, such as length of line and degree of angle. If we
imagine a solid to be made of sheet-rubber and remove one face, we
may stretch out the remainder onto a plane. All the edges and vertices
are preserved, and all the faces except one, which we imagine to sur-
round the others.? We refer to them here simply as ‘diagrams’.

When the number of faces (F) is given and even, the number of
vertices (V) ranges from F/2 + 2 at minimum to 2F-—4 at maximum:
or in all, there are (8F—10)/2 solids with the same number of faces,
but differing as to number of vertices.®* V and F are interchangeable in
these formulae. When V is given and even, F ranges from V/2 + 2 at
a minimum, to 2V —4 at maximum.

Applying the above to the hexahedra, or F6, we find that six
faces occur in four different V-families which may be described thus?.

(a) V8 F6 e24
(b) V7 F6 22
(c) V6 F6 e20
(d) V5 F6 el8

in which ‘e’ is the sum of the edges of the polygons - twice the sum of
the polyhedral edges (E)5. These polyhedra differing as to number of

*Superior numbers refer to Notes.
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vertices, but retaining the same ‘F’ value are called, arbitrarily, ‘mem-
bers’ of the F6 family.

These four cases, however, do not exhaust the possible hexahedra,
for under certain circumstances, changes can be made in the polygon-
al faces without changing the numerical values of V, F, and e. These
polyhedra which change their ‘facial’ character only are called ‘allo-
morphic variations’, or ‘allomorphs®.

Let us take a polyhedron such as
(e) V10 F10 e36

and examine it. The mathematical phrase describes a solid of 10 ver-
tices, and 10 faces. The sum of the edges of its faces is 36.

Figure 1

In the diagram of this solid (¥ig. 1a) we see line 1-2 to be the
mutual border of a 3-gon and a 6-gon. If we detach this line from 2
and rotate it to 3, the new line becomes the border between a 4-and
a 5-gon. The number of vertices, faces, and edges remains the same -
only the polygons making up the faces have been changed. We have
created an allomorph by this operation.

We may draw certain conclusions from the above: for the rotation
of an edge to be significant and to lead to the creation of an allomorph,
a difference of at least 2 must exist between the sides of adjacent
polygons. Also, the sum of the sides of the adjacent polygons must be
at least 8 for a significant rotation of the border between them: for
the rotation of the line dividing a 3-gon and a 4-gon can only result
in the same polygons reserved. We were able to make the rotation
above (Fig. 1) because the border-line separated a 6- and a 3-gon.

Another restriction whose importance will be seen when we ex-
amine the Hexahedra is that the rotation which leaves a vertex with
less than 3 edges concurrent at it, requires a second rotation to fill the
deficiency. This is true in the ‘earliest’ member of an V family - i.e.,
that member which has the least number of faces for a given number of
vertices. A charactaristic of this member is that all its vertices are tri-
linear - hence, if any line is detached from a vertex, another line must
be taken from a 4-linear vertex and joined to the other to give it its
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necessary quota of 3 lines. To illustrate,

Fig. 2 Fig. 3

if edge 10-9, the mutual boundary between a 3- and a 6-gon, is de-
tached from 9 and rotated to 8 (dotted), vertex 9 lacks a necessary
edge. However, vertex 8 now has 4 lines concurrent at it and can
therefore give up one of them. When 2-8 is rotated to 2-9, vertex 9
is again trilinear. (Fig. 3).

We may say, therefore, that in this earliest member, two border
rotations are necessary to accomplish a single significant change, or
allomorph. In subsequent members, the increase of faces results in
more and more 4-linear vertices, and the chance is thereby diminished
of stripping vertices of their necessary quota of edges.

It will be noted that two of the four members which contain six
faces are earliest members of their respective V families, the V8 F6
and the V7 F6.

If we wish to deal with this problem more analytically, and to put
diagrams to one side, we may think of e as the sum of certain digits,
corresponding to the sides of the polygonal faces, and may recast the
problem thus: In how many ways can we reach the total, e, using
certain digits F times?

In the case of the familiar cube, described as
1) V8 F6 e24

we are saying, in effect, that 24 is the sum of certain digits - in this
case, 4’s - used 6 times. It is possible to reach the same total, e, with
different groups of digits F times and these constitute the allomorphic
variations of this member.

The ‘certain’ digits referred to are the polygons possible within
the limitations of the polyhedron in question. It is found that when
V=T, the largest polygon possible has 2V--F-—1 sides; when V=F,
as in the case of the cube, the largest polygon may have F—1 sides.

Returning to the F6 family and examining the first solid of the
list of V families containing six faces, the V8 F6 e24, we analyze it
in this way: Its maximum polygonal face is a 5-gon, its minimum a
3-gon, and there are six faces in all. The sum of the edges, e, of these
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polygons is 24. The question is, In how many ways may 24 be totalled
using any of the digits 5, 4, and 3 six times only, and allowing rep-
etitions? The following table shows the four possibilities:

L € R ¢ B

4 5 5 5
4 4 5 5
4 4 4 5
4 4 4 3
4 4 3 3

\ 4 3 3 3"

3 24 24 24 24

d The ‘4’s’ (or, 4-gons) of column 1 are raised and lowered succes-

k sively by 1 until in column 4 this is no longer possible. When we try
to draw diagrams of these we find that only two are constructable -
the arrangements of columns 1 and 3. This is not surprising, for we
have already seen that in the earliest member of any V family, two
rotations are necessary to accomplish one allomorph. The two possible
constructions are shown below.

(a) (b)
' Fig. 4

When we rotate edge 2-7 around 2, between ‘the two 4-gons, to
produce the 3-gon and 5-gon of column 2, vertex 7 loses a necessary
edge (Fig. 5, a and b). The deficiency is supplied by the rotation of
5-8 to 5-7, and this results in the variation of column 3.

44—



RECREATIONAL MATHEMATICS MAGAZINE

An analysis of the next member of the F6 family, the V7 F6 e22
member, shows the three arrangements of the digits representing the
polygonal faces. The maximum-sided polygon is a 5-gon, as before.
We restate the proposition to read, In how many ways can we total
22, using any of the digits 5, 4, and 3 six times, and allowing repeti-
tions?

) 2) 3)
1 5 5
4 4 5
4 4 3
4 3 3
3 3 3
3 3 3

22 B5) 22

In column 1 the sum is attained with the maximum number of mini-
mum-sided polygons - 3’s and 4‘s. The 4’s of this column are increased
in the two succeeding columns with the corresponding decreases, to
keep the balance, until no further raising and lowering of 4 is possible.

Fig. 6 Fig. 7

Fig. 6 shows the column 1 arrangement. The mutual border 2-6
between two 4-gons may be rotated to a new position, 2-5, (dotted) to
form a 5- and 3-gon: vertex 6 now lacks a necessary edge which may
be supplied by the second rotation of 4-5 to 4-6 and we have the ar-
rangement of column 2.

Note that edge 3-4 may be detached from vertex 4 and attached
to vertex 1, thereby making the column 3 arrangement, of two 5-gons
(Fig. 8).

RECREATIONAL MATHEMATICS MAGAZINE

However, the diagram shows clearly that the pentagons 12567
(shaded) and 14653 have three vertices, 1, 5, and 6, in common - an
impossibility: and, actually, the arrangement of column 3 is impossible
to construct without warping. Hence, only two of the arrangements
found analytically are capable of construction. '

Proceeding to the third solid of the list, the F6 V6 €20, we analyze
it as before, using again the digits 5, 4, and 3,

(O] 2)

CO QOO i
LWWWwo

20 20
and find that both columns are constructable (Fig. 9).

Fig. 9
Treating the F6 V5 18 in the same manner, we see that all the
faces are triangular, and that this member of the F6 family exists
only in this one form.

WWWWwWw

18
Fig. 10 shows the diagram of this member.

hee
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A recapitulation of the foregoing shows seven constructable con-
vex hexahedra (there are three more concave hexahedra) - but de-
spite this interesting fact, our dice-rolling friends will continue to use

the cube for the very good reason that it is still the best roller!

F6 V8 e24

F6 V7 e22

F6 V5 el8
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1)
2)
3)
4)
5)

6)

7)

NOTES

Published as a problem in SCIENTIFIC AMERICAN Maga-
zine, June 1961, in Martin Gardner’s column, “Mathematical
Games.” :
See “INTRODUCTION TO GEOMETRY,” by H.S.M. Coxeter,
p. 152: and “AN INTRODUCTION TO THE GEOMETRY OF
N-DIMENSIONS,” by D.M.Y. Sommerville, p. 100.

When F is odd, the range of V is from F/2 + 2.5 at minimum, to
2F —4 at maximum, and there are (3F—11)/2 solids with the same
number of faces, but differing as to number of vertices.

Based on the well-known formula of Euler, V+ F—-E=2.

See “INTRODUCTION TO GEOMETRY,” by H.S.M. Coxeter,
p. 153.

A term used by D.M.Y. Sommerville in “AN INTRODUCTION
TO THE GEOMETRY OF N-DIMEN SIONS,” p. 101.

For V—1 points may lie on a plane, and F=V in this configuration.

:::’J.A'L | ll” [

“DID YOU KNOW THAT IF YOUR BELT SNAPPED YOU'D

KAFMAN 1
!

FALL AT THE RATE OF 32 FEET PER
SECOND PER SECOND?”
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Al pthametics
Here’s another collection of Alphametics for your enjoyment —

answers to these will be in the October RMM. The answers to the June
Alphametics follow this months selection.

Alphametics have been around for quite awhile
S E ND and the Editor has had the two given here sent
M OR E to him several times. The origin of each is un-
MONE Yy known — but many RMM readers may not have
seen them, or may have forgotten the answers if

they have seen them.

EVE = . TALKTALKTALK ... ..
DID
CATS
EAT
Now the English may not be perfect, but XX X X %
this little Alphametic has a unique answer. X X X X X
(Alan Gold) XX X X X

Alphametics do not necessarily have to be

WHEAT  y5ed on our usual decimal number system. So

M what is the value of FARMER expressed in the
FARMER lowest-base system applicable here?

(Margaret M. Rohe)

. DAN
Dan and Edna may have had a good time at AND

Aden, but what kind of a time will you have trying to E DN A
solve this Alphametic? (A .G. Bradbury) AT
ADEN

Here’s an Alphametic in a rather differ-

ent form. It’s a bit difficult so be wary. CARTER —
(J. A. H. Hunter) V CAREER NOwW

Here are the answers to the Alphametics from the June issue of
RMM. RMM readers who solved them correctly are listed.

(1) MOON 95562
MEN 902
CAN = 382
REACH 10836
(2) (W)(VEXATION) =EEEEEEEEE
9(987654832)—=8888888838
—49—
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3 ALLS 9332 9332
WELL 8433 8433
THAT = 659 or 6096
ENDS 4072 | 4572

SWELL 28433 28433

(4) UN 35 34
UN 35 34

DEUX = 8230 or 8632
DOUZE 84372 87316
SEIZE 92672 96016

(5) The First Doggerel:

PINT plus a PINT makes a QUART = 6390 plus 6390
equals 12780 and QUAINT equals 127390. URN — 289.

(6) The Second Doggerel:
PINT plus a PINT is still a QUART = 7920 plus 7920
equals 15840 and DIET equals 3960. Then DAIQUIRI is
38915949.

Here are the RMM readers who sent in correct answers to the
June Alphametics. The correctly solved puzzles are in parentheses
after their names.

Alan Gold of Downsview, Ontario (1, 2, 3, 4); Norvin Pallas of
Cleveland, Ohio (3); George Propper of New York, New York (1, 2, 3,
4, 6) (Mr. Propper was the only one to find the alternate solution to
No. 4. It was thought that this Alphametic had a unique answer.);
Don Singleton of Pasadena, Texas (2, 5); Anneliese Zimmerman of
Montreal, Quebec (1, 2, 3, 4, 5, 6).

Word Games by . Bakex

Mr. Baker is vacationing and will resume his Word Game duties in
the October issue of RMM. In the meantime, RMM Word Game en-
thusiasts will not lack for puzzles. Here are a few that will challenge
the most avid Word Fans.

L|SIH|O}P You are invited to make a word
square which reads the same Down
as Across using the word BISHOP as
the key word as shown in the diagram.

(N. A. Longmore - Kent, England)

V(O In|~—|D
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Lloyd Jim Steiger asks for an-example of a word, in common Eng-
lish usage, which exists in the negative form and also in the double
negative form but not in the simple positive form.

W. A. Robb would like RMM readers to try to find out if there
are other words with the vowels in their proper order (two are AB-
STEMIOUS, FACETIOUS) and if there is at least another word with
the vowels in their reverse order other than SUBCONTINENTAL.

The Answers to the June Issue Word Games.
“7” LETTER SCRAMBLE

RIITINIG|E([N|/ The proper answer, supplying the clue
GIAIHIN[U [T |£F]| teasers and with none of the words ending in
LINIGIEIS|TIA “G”, is shown to the right. A further clue,
EINITIGIMIAS for those who couldn’t find all the words
LILINIKIAIGIE ding in “G”, is that the oth luti

RIaINIGITIEIR ending in , 1s that the other solution to
G|AIT]1|IN][G[S| this puzzle has all the words ending in “ING”.

CHANGE A LETTER

Mr. Baker’s answer to this one is: PRETEND, PRINTED,
PERIDOT, CORDITE, CHOIRED, HEROICS, ECHOISM.

Puzzle-solvers for the “7” LETTER SCRAMBLE include: W. A.
Robb ‘of Ottawa, Ontario who supplied both of the required answers,
using ANGRIER instead of RANGIER; David Kaplan of Brongx,
New York who likewise solved both parts, using GRANIER instead
of RANGIER; Joseph D. E. Konhauser of State College, Pa. who
found both sets of answers (again GRANIER instead of RANGIER);
Corine Bickley of St. Louis, Missouri who found both solutions (with
GRANIER instead of RANGIER); Robert S. Johnson of Montreal,
Quebec who found all the “ING” words and used GAINETH instead
of GAHNITE and GAMINES instead of ENIGMAS for the other
part of this puzzle; Donald V. Trueblood of Bellevue, Washington who
found both parts, using the same substitutions as Mr. Johnson in the
other part.

The CHANGE A LETTER solvers: W. A. Robb of Ottawa, On-
tario supplied the greatest number of solutions to this puzzle and his
answers are listed in the next paragraph; Robert S. Johnson used
PRETEND, PORTEND, SNORTED, SHORTED, HOISTED,
ECHOIST, ECHOISM; Edlth Marsh of Montreal West Quebec used
PRETEND PORTEND DEPORTS, STORMED, MOISTER,
HEROISM, ECHOISM; Jose h'D. E. Konhauser used PRETEND,
SERPENT (or PRESENT), RESPECT, PRECISE, MERCIES,
CHEMISE, ECHOISM; Corine Bickley used PRETEND, TEND-
ERS, RODENTS, MONSTER, MOISTER, HEROISM, ECHOISM;
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Donald V. Trueblood used PRETEND PRINTED, POINTER RI-
POSTE, IMPOSER, HEROISM, ECHOISM.

Now here is the list of solutlons found by W. A. Robb of Otta-
wa, Ontario:

PRETEND SERPENT RESPECT PRECISE COPIERS COHEIRS ECHOISM
PRETEND REPENTS SPECTRE PERCHES SPHERIC HOSPICE ECHOISM
PRETEND TENDERS TINDERS RESCIND CRONIES INCOMES ECHOISM
PRETEND SPENDER PONDERS DONSIER MERSION HEROISM ECHOISM
PRETEND PRINTED POINTED DEPOSIT IMPOSED MEDICOS ECHOISM
PRETEND DENTERS RODENTS SCORNED ORCEINS HEROICS ECHOISM
PRETEND PRESENT TRENISE RESHINE CHINESE CHEMISE ECHOISM
PRETEND PRESTED CRESTED DIRECTS CHIDERS CHIMERS ECHOISM

Errata for the June 1961 RMM

Page 34: Line 5 of section 7 should read “the sum by the number of
them; for the geometric mean of a few”.

Page 50: 3*° divided by 10 leaves a remainder of 9 (not 10).

Page 55: Reverse equations: 001 = 10%

Page 58: In Mr. Hunter’s figure, the p and q should be interchanged

and the last denominator on this page should read (b-c)2.

Look at the advertising in RMM — it’s to your advantage — and
when you answer an ad, say you saw it in RECREATIONAL MATH-
EMATICS MAGAZINE. ‘



Peugzles and Prollems

It appears that RMM readers object to being able to peek at the
answers, so the answers to all of the following puzzles will be published
in the October issue of RMM.

The Editor wishes to thank all the puzzle-solvers for their an-
swers and comments to the June puzzles (pages 48-49) and hopes that
many more will try their hand at solving the puzzles and getting their
names published.

1.‘ Ladder Legs and Cross-Stays

The angle between the equal

45° legs of this step-ladder is 45°. From

each leg there is a cross-stay per-

pendicular to the opposite leg, their

lengths being equal. The feet of

2 the ladder are six feet apart. How

far is the crossing-point of the two
stays from the top of the ladder?

(Sinclair Grant - Perth, Scotland)

2. River-Crossing Dilemma

Three explorers, each with h's
native bearer, were hacking their
way through the jungle when a riv-
er interrupted their progress. Hav-
ing been foresighted enough to bring a two-man rubber boat, they
inflated it, and immediately encountered two more difficulties:

While each explorer knew how to maneuver across the river, only
one of the natives was able to manipulate the boat. None of the ex.
plorers was willing to remain on either side of the river, even momen-
tarily, while outnumbered by natives.

How was the party of six able to cross the river using the rubber
boat? (E. A. Beyer - Novato, Calif.)

3. Tricky Window

A sash window with a half round top is five feet wide. If the top
sash is lowered one foot, what is the area of the moon-shaped opening
at the top? ( H. V. Gosling)

4. Ladder and Barrel

A ladder is leaning against a wall at on angle steeper than 45°.
Under the ladder a large barrel has been rolled which just touches
both the ladder and the wall. If the diameter of the barrel, in feet,
is */; that of the vertical distance from the top of the ladder to the
ground, what is the smallest integral number of feet the ladder can be?
(N. A. Longmore - Kent, England)

6 Feet
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5.  The Oracle of Three Gods

A certain oracle is presided over by three gods, who take turns
in answering the questions put to it by pilgrims. The three gods are
the God of Truth, who always tells the truth; the God of Falsehood,
who always lies; and the God of Equivocation, who alternately tells
the truth and lies.

One day a pilgrim arrives and wishes to know whether or not his
wife is faithful. Unfortunately, the poor pilgrim does not know which
God will answer his question. Moreover, the priests of the oracle allow
only one question from a pilgrim.

How should the pilgrim state his question, so as to be sure
of his wife’s fidelity or otherwise?

(N. A. Longmore - Kent, England)

6. The Prolific Author

A famous author made a present of his collected works. His friend
received the books and found that one-half of the volumes were novels,
one-quarter were poetry books, one-seventh were books of plays, and
three volumes were collections of miscellaneous items. Can you tell
how many volumes were given away? * (G. Mosler)

7. A Quick Answer on This Puzzle - Sharing the Ride

A friend of yours has hired a cab to take him back and forth to
work at a flat rate of $3.00 for the round trip. Since you live exactly
half-way between his house and his office, and you happen to work in
the same building, he offers to take you to the building and back each
day. Quickly now: what would be your fair share in the ride?

(G. Mosler)

8. The Stamp-Collecting Kid

Peter was quite excited when he came home from school. “See
what I bought from one of the kids,” he told his father, putting three
stamps on the table. He pointed to a Cape triangle. “I got that for
less than 50 cents, but the other two cost more than that for each
one.”

His father examined the specimans. “Not bad,” he said, “but you
should have made an offer for the three as one lot.”

Peter shook his head. “Not with Tom. I think I did better by
beating him down cent by cent on each.”

“What did you pay?’ his father asked, interested in one of the
stamps for his own collection.

'The boy wasn’t giving a straight answer to that question. “If you
multiply the three differences between the prices,” he replied, “you
get what I paid altogether in cents.”

Well, what did Peter pay? (J. A. H. Hunter)
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9. A Magic Hexagon

Fill in the hexagons in the
figure so that each ring of hex-
agons will have equal whole
numbers in the hexagons mak-
ing up that ring and so that
the sum and the product of
a straight line of hexagons will
equal the sum and product of
all the other straight lines of
hexagons.

(Lloyd Jim Steiger)

-

ANSWERS TO THE PUZZLES AND PROBLEMS IN THE JUNE
ISSUE OF RMM (Pages 41-43)

The answers to the puzzles are given first and the RMM readers
who submitted correct answers are given afterwards with the correctly
solved puzzles in parentheses after their names.

2. High Stakes: Mike won the first, second, fifth, seventh and eighth
games of the ten games played. The comments from readers necessi-
tate the full workings of the answer to this little gem.
2°<601< 2%, so they played 10 games. The gross total of stakes
was 2°4-2'+23 . .. +2° = 1023 cents. Let’s say that the gross win-
nings were:
Steve x cents and Mike y cents

Then x+y=1023 and x—y=601; whence x—=812 and y=211. In bi-
nary notation 211 appears as 11010011. So Mike won the 8th, 7th,
5th, 2nd and 1st games.

4. Breakfast Mathematics: Mr. Smith started with a full cup of cof-
fee (6 swallows) and successively took 1, 2 and 3 swallows before
taking the full 6 swallows. Therefore he had added 6 swallows of cream -
as much cream as coffee.

5. Squares at the Round Table: Mr. Smith’s son took away 46
blocks from the original square arrangement of 144.

6. No Problem for an Accountant: Mr. Smith lived 2 miles from
work, took 6 minutes to drive the first day, 4 minutes the second day,
and should go 24 miles per hour every day to arrive on time.

7.  'The Doctor’s Dilemma: Dr. Nimbus was born in 1897, has 12
granddaughters (3 from each of his 4 daughters), has 20 grandsons
(4 from each of his 5 sons), and his license number is 77777.
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8. Some Extracurricular Activity: All the clubs met once during
the quarter on March 2. There were 24 days they did not meet at all:
January 2, 8, 12, 14, 18, 20, 24, 30; February 1, 7, 11, 13, 17, 19, 23;
March 1, 38, 9, 13, 15, 19, 21, 25, 31.

9. An Airport Problem

The young man was heading toward his destination exactly half-
way around the world and so he could have gone in any direction with-
out going to much out of his way. Credit must be given to Don Single-
ton for finding both answers. The young man was also go'ng to fly
completely around the world, back to the airport.

Correctly solved by: Jack Abad of Central Michigan University (4, 5,
7, 8, 9,); Merrill Barnebey of Grand Forks, North Dakota (2,4,5,6,7);
Richard H. Beck of Mt. Vernon, New York (9); Jeanette Bickley of
St. Louis, Missouri (4,5,6,7, first part of 8,9); Micky Eafnshaw of Los
Angeles, California (4,5,6); Alan Gold of Downsview, Ontario (4,6,8);
Joe Haseman of Lakeland, Florida (2,4,5,6,7,8,9); B. C. Kimmons of
Rosedale, Ontario (4,9); John Lewis of Los Angeles, California (2,4,
5,6); Norvin Pallas of Cleveland, Ohio (2,5,6, half of 8, 9): George Prop-
per of New York, New York (2,4,5,7,8); Don Singleton of Pasadena,
Texas (4,5,6,9 including the second possible answer for 9); Spencer
Stopa of Chicago, Illinois (2,4,8); Anneliese Zimmermann of Montreal,
Quebec (2,4,5,6,7,8,9); Bill Watson of Macon, Georgia (2,4,6,7).

A Cross Number Puzzle (Page 40 of 7 z 3 %

the June Issue of RMM) /13 515
The answer is shown in the dia- |[° 6

gram to the right. Correctly answered / g 4 3 6

by: Anneliese Zimmermann of Mont- 77 5 2

real, Quebec; Don Singleton of Pasa- ; B

dena, Texas; George Propper of New 6 ? 2 ,05

York, New York; John Lewis of Los [}, 7z 113

Angeles, California; Alan Gold of | 3 41212145

Downsview, Ontario; Jeanette Bick- [ 5

ley of St. Louis, Missouri. 916 5

Look at the advertising in RMM — it’s to your advantage — and
when you answer an ad, say you saw it in RECREATIONAL MATEH-
EMATICS MAGAZINE.
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Book Review [;y g H. M. Hunter

INTRODUCTION TO GEOMETRY
by H. S. M. Coxeter, F.R.S.
Published by John Wiley & Sons, Inc.; $9.95.

The title of H. S. M. Coxeter’s new book - INTRODUCTION
TO GEOMETRY - hardly suggests my own personal reaction imme-
diately after a first quick skim-through of its more than 400 pages.
Moments later I was in my kitchen stabbing madly with a knife at
at lot of dry rice in a small jar! Figures never lie, and the truth of
some very abstruse theorizing was amply demonstrated by this homely
little experiment.

This is an amazing and quite fascinating tome. As a university
text-book it is clearly one of the more important works of this decade.
It covers an unusually wide field starting with Euclidian geometry,
and thence by easy stages through affine and projective geometries
to topology and four-dimensional concepts. And throughout its four
Parts, Coxeter has contrived to leaven much very solid mathematical
“meat” with frequent touches of lightness and humor.

But there is also much to intrigue the ordinary dabbler who is
interested only in the recreational aspects of mathematics. This was
to be expected, of course, from Professor H. S. M. Coxeter. In the
first rank of mathematicians today, he is also known for his work in
revising and bringing up to date Ball’s popular Mathematical Recrea-
tions and Essays.

There has been some discussion in RMM of the famous Theorem
of Lehmus - “If the internal bisectors of a triangle are equal, then
the triangle is isosceles.” Many proofs of this have been evolved, some
of them valid, and one running to 40 pages! But Coxeter poses this
as an exercise for the student, throwing out a hint which leads to his
own delightfully simple and brief proof which is well within the scope
of mathematically inclined High School students!

P

c

If the base angles are not equal, say ZABC</ZACB. Then, the
equal angle bisectors being BM and CN, there is a point P on AN
such that /ZPCN=14/ABC, and a point @ on PN such that BQ=CP.

8 [ B
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For claﬁficatioﬁ, the triangles CNP and BMQ are shown separately
and re-orientated. Since /PCN=/QBM, and CN=BM, and BQ=CP,
these two triangles are congruent. Hence, /NPC—=/MQB.

But this is already one step beyond the given hint, and many
RMM readers will prefer to complete the proof on their own.

Did someone ask about trisecting an angle? Coxeter touches on
this classic problem too, and even gives an outline of a simple proof
of its impossibility. And in the same section we find a neat little theorem
in elementary Number Theory that will amuse some of the Number
addicts amongst our RMM readers.

This is an introduction to geometry in its widest sense, and it
includes consideration of many things which might seen far removed
from the field of mathematics. There is the quick method of forming
a regular pentagon merely by folding a strip of paper. That has an
obvious mathematical implication. But what about the luscious pine-
apple and its manifest connection with the pentagon and with the
Fibonacci series?

We see how phyllotaxis - meaning “leaf arrangement” literally -
follows precise mathematical laws, and that these also apply to such
diverse arrangements as the seeds of a sunflower, the scales of a fir
cone, and the external cells of our pineapple. And inh the vegetable
world, as also in the fields of architecture and design, that same Fibo-
nacci series turns up again and again.

What vision of curved space did Shakespeare have, two full cen-
turies before its “discovery” by Bolyai and others? Was he peering be-
yond the confines of Euclidean geometry when he made Hamlet say
“I could be bounded in a nutshell and count myself a king of infinite
space”? Two centuries later the first formal work was started on the
concepts of hyperbolic geometry, and here Coxeter outlines an almost
simple proof that the area of a triangle remains finite when all its
sides are infinite!

But these have been only a few of the many diverting items which
make this book so intriguing even for those who look only for “fun”
in mathematics.

It is indeed a most notable production.




Readens’ Researnch Depantment

Several analyses of the color problem were received, but the
Editor would like to see a few more. Those submitted did not agree
and it would be interesting to see the analyses of others. The prob-
lem was: What is the least number of colors with which one can
color a plane in such a way that no pair of points unit distance apart
are colored the same It was shown that seven colors are at least
sufficient - but what is the least number?

Thomas S. Briggs of San Francisco, California has submitted
an analysis of the Dots and Squares game in the April issue of RMM.
Commentaries, or extensions of the basic ideas involved, are welcomed
by Mr. Briggs and the Editor.

An Analysis of “Square It”

The game of Square It, having players play alternately except that
a player completing a square must take another stroke, is subject to
the following analysis:

Let S —= number of squares in the Square It array and P = the
perimeter of the array in strokes. At one point in the game it be-
comes impossible to take another stroke without creating a region in
which the opponent can complete squares. Let us call this point the
“saturation” point. At saturation M, — number of strokes on the
perimeter of the array, M, — number of strokes in the interior of the
array, M = total number of strokes and r — mazximum number of
regions which can be squared in one turn after saturation. For the
'saturated array in figure 1 we have S = 9, P = 12, M, = 4, M,
=7, r = 4.

) > —
Figure 1.

Now, every region at saturation which is not closed must have at
least two strokes missing or it would be “squareable”. If we con-
sider all arrays having unclosed regions with the two strokes missing
at the perimeter, M, —= P — 2r.

Each square of these arrays must be bordered by 2 strokes if the
array is to be saturated. Since each stroke in the interior borders 2
squares, we have:

M:Mp'l‘M;
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By substituting we find:

M= (P — 2r) + (28 — M,)/2
M= (P —2) + (25 — P + 2r)/2
M= (P + 2S5 — 2r)/2

For T = total number of turns in a complete game, notice that
one move is needed after saturation to make a region squareable.
Thereafter, each region corresponds to a move. The total number of
moves will then be: ’

T=M+r+1
T = (P + 25 + 2)/2

This formula will hold for any array of squares regardless of
shape or size. However, in using the formula to determine a winning
strategy it is necessary to also account for all regions which close on
themselves. These regions have- the effect of adding an extra turn to
the total. Let r. — number of closed regions. Then for arrays hav-
ing open regions open at the perimeter:

Mp=P—‘2(r_rc)
M=[P+ 25 — 2(r —1.)]/2
T:P+2zs+2 + r.

In a 3x3 array we can have no more than one closed region at
saturation. (Figure 2)

L J ] [ 3
LJ e .IL.___.
Figure 2. Figure 3.

Thus, T = 16 for a 3x3 array with no closed regioné and 17 for one
closed region. ’ -

Regions which open in the interior of an array are another com-
plication this game can have. Figure 3 shows how this can occur in a
3x3 array. Each such opening leaves a cell with one less side at sat-
uration. Also, there is one.less opening at the perimeter per internal
opening. Let i — number of internal openings:

Mp:P—z(r‘—rc)+i
M, = (2C — i — M,)/2
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In M = M, + M, the i subtracted out; thus, internal openings
have no effect on T. Internal openings are considered boundaries
between two regions.

Sacrificing squares before saturation also does not affect T. Al-
though a sacrifice creates an extra move, it also eliminates a region.

To determine the strategy needed to force a win we must assume
that errorless playing will leave the deciding region to the last person
to play. If this is the case, the first player wins when T is odd and the
second player wins when T is even. The first player will win the
games in figures 2 and 3 and the second player will win the first game.
The only way the deciding region cannot be played last is when there
is a small closed region joined by a long open region as in figure 4:

Figure 4.

Thus, although the first player plays last in this game (T'= 17), the
second player will win.

Now let us assume both players are aware of this analysis. Since

it is not difficult to keep the opponent from changing T by closing a

region, the Size of the array will have the greatest bearing on who will
win. For square arrays with side s:
T 4s + 28 + 2

T= —" = +4r
2

T:Sz+2s+1+rc
T=1(s+ 1) +r,

When s is odd the second player wins and when s is even the first play-
er wins unless, because of an error in tactics before saturation, r. is
greater than zero and odd.

To summarize for the 8x3 or odd x odd arrays, the second player
will win the game unless the first player can close a region. The sec-
ond player can nullify a closed region by closing another region or
extending an open region from the closed region as in figure 4.

The Research Problems for this issue are short — but they may
not be as easy to solve they are to state.

(1) Maxey Brooke of Sweeny, Texas states that one can form
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an array as shown in the figure below so that three integers, in arith-
metic order, can be arranged to equal the same along each of the indi-
cated lines. The problem is: can a solution be found using more than
three integers?

N-¢ /N\

- U

(2) The Editor has played around with this particular research
problem without coming to any solution. Given a regular pentagon
and any point on one of the sides: Construct a straight line through
this point which bisects the area of the pentagon.

There are two points that must be cleared up first. A lme
through a vertex can be constructed perpendicular to the opposite
side and this line will bisect the pentagon. Also a line
through the mid-point of a side through the opposite vertex bisects the
pentagon (actually the same case as before). The problem requires
constructing the bisecting line through any point on a side. A line
through any point throught the center of the pentagon does not bisect
the area — except as just noted.

The problem could be generalized to include the bisection,
through a point on a side, of any regular polygon with an odd number
of sides.

Look at the advertising in RMM — it’s to your advantage — and
when you answer an ad, say you saw it in RECREATIONAL MATH-
EMATICS MAGAZINE.



Vembers, Heumbers, Vembers

The 18 Perfect Numbers

The April and June issues of RMM featured notes about Perfect

numbers in the Numbers, Numbers, Numbers department. The demand
for the full values of all 18 Perfect numbers has forced the editor (who
was willing, anyway) to print them here.

The task of proofreading this mass of digits was taken on volun-
tarily by Alan L. Brown (East Orange, New Jersey), Rudolf Ondrejka
(Atlantic City, New Jersey), Adrian Struyk (Paterson, New Jersey)
and Dmitri Thoro (San Jose State College, California).

The following Perfect numbers are of the form 2°-*(2°—1) where
p and 2°—1 are prime. The values for p for the 18 numbers listed are,
respectively, 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607,
1279, 2203, 2281, 3217.

V.= 6
V.= 28
Vs = 496
V.= 8128
Vs = 335 50336
Ve = 85898 69056
V= 13 74386 91328
Ve = ' 2305 84300 81899 52128
Vo— 26 58455 99156 98317 44654 69261 59538 42176
Vi = . 1915
61942 60823 61072 94793 37808 43036 38130 99732 15481 69216
Vi = 13164 03645 85696
48337 23975 34604 58722 91022 34723 18386 94311 77837 28128
Vi = ’ 14 47401 11546 64524 42794 63731
26085 98848 15736 77491 47483 58890 66354 34913 11991 52128
Vi = 2356 27234 57267

34706 57895 48996 70990 49884 77547 85839 26007 ~10143 02759
75063 37283 17862 22397 30365 53960 26005 61360 25556 64625
03270 17505 28925 78043 21554 33824 98428 77715 24270 10394
49691 86640 28644 53412 80338 31439 79023 68386 24033 17143
59223 56643 21970 31017 20713 16352 74872 98747 40064 78019
39587 16593 64010 87419 37564 90579 18549 49216 05556 46976

= 1 41053 78370 67120
69063 20795 80860 63189 88148 67435 14715 66783 88386 75999
95486 77426 52380 11410 41933 29037 69025 15619 50568 70982
93271 64087 72436 63700 87116 73126 81593 13652 48745 (6524
39805 87729 62072 97446 72329 51666 58228 84692 68077 86652
87018 89208 67879 45147 83645 69313 92206 03706 95064 73607
35723 78695 17647 30552 66826 25328 48863 83715 07297 43244
63835 30005 31384 29460 29657 51433 68065 57075 95373 28128
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53743
58534
01382
52077
40681
82343
55867

17554
14622
45375
03657
78999
00776
50173
29214

48981
29194
74990
26355
371563
13663
52651
14407

26001
68320
10731
10098
52217
15333
59367
64277
03464

84513
34607
42076
27254
615568
56650
04133
51023
52641

91316
85919
76054
69044
71796
10310
88092

28178
23245
52897
58479
49003
70395
85830
51075

95710
09618
66046
205657
75996
80164
35032
20213

45384
47797
23800
18743
80016
11195
98489
99590
96714

11792
87935
33062
94441
26514
48316
13266
20738
05353

14085
89999
39746
92443
04658
92624
14788

42548
06715
47625
82475
36673
25923
51710
05979

84543
58901
70418
36716
62797
61908
06199
72831

07298
22990
67072
16930
66292
23441
50072
31022
45569

67593
97703
89490
51193
48231
36564
03463
22761
23991

64905
21056
26278
14948
67348
24446
66773

17319
97919
61793
36021
94150
18946
28603
91145

10
02608
37954
20830
71624
48493
02604
30563
42596

33097
55273
60231
30281
29157
42315
71963
92034
32428

59810
71846
88642
27721
91367
85683
93552
37352
50005

39031
71992
89030
61729
72099
35477
21398

61195
37573
95176
17288
37472
66273
02123
62215

89258
06731
61826
87124
20268
43590
03235
67369
37014

17141
91479
70094
54303
11026
96149
47516
62062
19468

10355
50765
99004
82768
75835
15025
02834
66571
87499
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54162
69578
19190
57303
43511
25721
89635
75666

16598
72820
h2442
04037
24966
61521
48966
19899

35505
89066
85531
62692
66333
39779
22955
52801
60505

95008
84469
22809
29007
40805
34140
38604
80807
59622

56288
99706
81786
14994
03415
56078
00612
70182
96247

52628
46039
57390
44550
31262
90569
44148
16247

55553
86087
63144
83048
98402
27756
47851
34576

78293
18508
22005
63781
60807
95421
67305
53023
60637

54980
36214
31477
11993
99294
26555
42417
52342
17756

79719
01616
49953
36598
271780
05813
69054
61519
58083

43658
20818
08026
58270
80837
46554
13917
14551

57393
82143
80313
60287
82408
03535
36394
49842

37698
47015
57627
64410
12310
36665
54163
04949
81192

85709
14786
47918
92984
01645
02423
21984
42290
66433

48569
99831
76453
49007
77022
30434
91569
60481
44537

47412
38720
36461
28395
90493
52996
19816
72696

77889
220562
44693
36212
06042
76470
99289
91328

22527
52986
80759
93145
94704
98820
99230
84686
45841

67138
07068
94700
29294
24830
60007
70655
64012
75489

01606
19838
79839
45724
15569
00055
560564
74171
82528
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V17 —
20260
63555
40394

08561
58880
09647
59038

62224
53452
19241
44943

21642
87875
01927
92176

53806
91093
30081
81931

05495
89434
75534
90474

80833
97100
17609
02441

45228
29178
89794

36472
41815
77074
63133

06322
39542
77449
58459

20748
31249
04551
94041

15832
70564
38040
32063

88655
40959
91626
91922

46332
62603
40430
73368

16989
68662
06365

33768
55951
38273
77067

95356
82708
19250
94953

55148
72681
63703
83770

99291
52264
19513
21375

60595
59768
80629
79570

95928
83262
08237
09777

64386
94981
61646

08164
34080
62571
11263

91247
75732
00089
52318

05768
17994
44725
74274

70797
79891
83582
97333

13323
35137
29055
72109

38140
54290
56411
14813

35711
51336
54594

57276
36145
82287
81492

71480
53631
47274
19781

28811
42346
52319
38914

23788
56121
98714
67850

51485
41218
16441
20437

15780
00440
50129
54343

994
26408
41650
77532

69037
12387
05676
53171

10136
15392
07937
36144

55834
41016
82033
99243

07395
80427
95782
23565

64175
70253
53382
81113

31820
72533
81796
87525
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97054
51177
25166
32301

39438
05843
43040
84391

31809
66115
22982
96497

09148
96001
65320
03484

01603
30122
29940
44310

75426
49639
76068
67127

55197
19613
01830
46136

33708
40205
45641
45360

56965
25525
18472
47800

66448
11649
93005
79252

96987
18157
14561
94544

07654
66011
81818
13056

11227
50440
18622
94483

82170
77965
28081
37567

64734
75773
69951
35832

22820
81395
31158
65137

09988
07049
78253
94809

57905
88847
41202
61051

40655
78345
15140
33127

10807
40616
94677
49643

27392
52746
01097
51399

42435
84932
68131
23268

30153
04871
25645
37344

22924
40164
42788
99098

23961
43661
88204
21267

60175
11022
46314
61023

32638
54653
41498
73559

06310
43905
87809
15776
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28499
43769

84247
90642
18166

23592
97727
78598

92248
10667
70269

44715
40515
01177

96704
88163
25319

88515
38125
34160

12383
56156
59556

43521
85210
71348

12662
19283
79621

94601
85468
00881

62611
74393
59774

81813
78059
09383

33 57083 21319

87972
03884

30130
32548
02944

23201
08485
29560

41817
39235
76942

62560
17095
01932

56745
15598
34095

06645
05411
91179

77139
19951
04400

12542
42107
43880

32422
02111
95936

56797
24093
58747

21386
03504
37781

38557
19702
82922

54549
49535

80704
24947
69121

84998
94647
72060

87708
10073
41031

95717
61679
74226

93989
24715
80454

13775
75238
78404

62049
54576
59050

19478
55317
43911

00783
92876
40826

85536
18461
44654

66740
90226
93050

85697
68557
77544

96241
77426

76236
61473
77873

56361
43635
01347

36089
74503
95552

96578
51095
30828

01942
64998
56248

92755
37438
56379

42879
69607
09176

48154
84918
63448

55773
17896
31162

10182
66962
76950

77111
03882
34874

81918
26877
91185

86724
57348
08498

55942
19657
79658

44177
53778
49556

51191
75540
98989

81556
45364
05077

05255
19626
86643

53988
25674
49920

82489
96405
356471

94784
35892
54323

45584
14688
22733

46696
49598
72686

39619
47974
97407

60647
64976
78596
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43701
21584
85573

23617
90746
22199

18592
15002
17851

12317
33525
71218

41912
94855
86835

17538
16327
83465

21942
44370
04873

52982
21269
14092

27620
66903
58638

22572
55848
28035

10125
34076
78051

07153
23347
86928

25620
70726
58328

08772
50444
69475

48505
56099
90166

54020
84915
48168

48852
31476
00121

21029
76150
04954

44844
51283
37988

54397
55019
05751

72331
08149
25537

11708
95463
80664

03105
60065
60330

39222
07141
75774

09233
99407
09603

97081
84960
88833

11080
04288
99061

09108
91860
34780

78185
88024
01859

26416
22794
46417

35450
66010
91125

89909
12787
50027

64732
44105
84557

40637
26560
13974

45949
64972
53138

18698
04887
94756

54567
60125
69568

55823
13028
39062

68229
46345
26285

38484
20487
73841

53782
07644
93006

07301
48863
88557

13068
35900
74673

29975
16891
76654

32896
95091
35506

39982
10064
48701

01483
17860
25807

27467
14522
26206

14337
63157
42390

24090
18895
91212

17866
01487
95910

11615
27631
25056
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Here are the answers to the two problems posed by H. V. Gosling
on page 56 of the June RMM.

a. An integer solution to a* + b* + ¢* + d* = e*
30% + 120* + 272* + 315 — 353¢
b. a® + b® + ¢® = d°® + e + f¢
3¢ + 19¢ + 226 — 10° + 15¢ + 23¢
J. A. H. Hunter of Toronto, Ontario and Dmitri Thoro of San Jose
State College, California both submitted the correct answers.

Mr. Hunter also submits a general solution to the particular
equation given by H. V. Gosling on page 56 of the June issue.

(%) + % = (%) + %
Can be generalized as:
)2 + = ()2 + % whereb =1a + ¢

And some more by Mr. Hunter:
o — (511)3 = (817)3 — %
7113 _ (7113)3 == (15[13)8 - 15[13
1:«1!43 — (13’43)3 — (48[43)3 —_ 48/43
And:
(10/9)3 + (5[9)3
(*he)? + (39)14)2 (*54)* + (F4)®
(Mes)? + (%es)? = (*%fes)® + (¥es)®
(13/63)2 =+ (65163)2 = (65[63)3 + (¥es)?
etc.

Clo)* + (*%)*

Il

Malcolm H. Tallman of Brooklyn, New York gives us the following
miscellanea.

One-Arm Mathematics. A pleasant pastime calling for only light
mental calisthenics is the compiling of multidigital numbers: integers
that are multiples of the sums of their digits.

For example, let’s take 29 as the common factor of a group of
composite numbers whose digits total 29 also. 4988 is the product
of 29 and 172 while 4 + 9 + 8 + 8 = 29. Here is a short list of
other numbers fulfilling this characteristic:

4988 17777 46748 66845 84854
75698 29738 55883 69716 87464
7859 37874 58754 ° 79373 92945
9686 43877 63974 81983 95816

The method is not given but should be found by the reader. When the
mystery is solved a list as above can be compiled easily within an
hour.
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Mnenomic for =. The number of letters in each word gives the re-
spective digit value.

~ Let a book a month instigate an urgent quest for newer material
including science novelties — all to get superior math output in school.

= = 3.1415926535897932384626

Fibonacci Pythagorean Triangles. The Fibonacci series of num-
bersis 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 and so on — each
term being the sum of the preceding two terms. Let a, b, ¢ and d
represent four consecutive Fibonacci numbers. Thenc — a + band d
=b + ¢ =a + 2b. To find integer values for the legs and hypot-
enuse, X, y and z, of a Pythagorean triangle the following relationship
can be used:

X = 2ab + a? y = 2ab + 2b? z = a? + 2ab + 2b°

where a and b are integers.
By rewriting and using the Fibonacci relationships above:
(a2 + 2ab 4+ 2b2)2 (2ab + a*)? -+ (2ab + 2b2)®
(a? + 3ab + 2b% — ab)? a?(2b + a)? + (2b)z(a + b)?
[(a + b)(2b + a) — (ab)]* a?(2b + a)z2 + (2b)*(a + b )?
(ed — ab)2 (ad)? + (2bc)?

Or, in any four consecutive Fibonacci numbers a, b, ¢ and d:

I (T

ad and 2bc are the legs of a Pythagorean triangle and
cd — ab is the hypotenuse.

For example, take the terms 13, 21, 34, 55. ad = 715; 2bc —
1428; cd — ab = 1597. And, indeed 7152 + 14282 — 15972

Lettens to the Editor

Dear Mr. Madachy:

Mazxey Brooke is substantially in error in thinking that Sherlock
Holmes ever wrote a treatise on the Binomial Theorem. It was, in fact,
his mortal enemy, that arch-criminal Professor Moriarty “the cele-
brated author of The Dynamics of an Asteriod - a book which ascends
to such rarefied heights of pure mathematics that there was no man
in the scientific press capable of criticizing it” (The Valley of Fear)
who “at the age of twenty-one wrote a treatise upon the Binomial
Theorem, which has had a European vogue.” (The Final Problem - the
last story in the Memoirs.)

Derrick Murdoch
Willowdale, Ontario
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Dear Mr. Madachy:

Does anyone know of a formula that tells the number of digits
in a given Fibonacci number? E.g. how many digits are in the 502nd
number of the sequence.

We found that within four or five numbers of the sequence, the
number of digits must change. It is evident that within five numbers
we must change one digit; within ten numbers we change two digits.
But we suspect that there must be a change of five digits within 24
numbers (not 25) and that within 67 numbers (not 68) there must
be a change of 14 digits.

Gilbert W. Kessler
Stephen Raucher

Brooklyn, New York

The editor would be interested in this formula, too. If readers
with helpful hints send them to the Editor (address on Contents page)
he will forward them to Messrs. Kessler and Raucher. To keep the
Fibonacci number reference consistent, use the series starting 1, 1, 2,

3,5, 8,13, ...

Dear Mr. Madachy:
As for that Moonshine problem given in the April issue and

answered in the June issue here’s my solution which does not involve -

tipping containers:

Fill the 13 quart container from the 24 quart container,
leaving 11 quarts. Fill the 10 gt. container from the 13 gt. con-
tainer and pour the remaining 3 qts. into the 11 qt. container.
Now pour the 10 gts. from the 10 qt. container into the 13 qt.
container and fill the remaining portion from the 11 qts. still re-
maining in the 24 qt. container. The 24 qt. container now holds
8 qts.

Pour the 3 qts. left in the 11 qt. container into the 10 qt.
container and place the 10 qt. container in the 11 gt. container.
Fill the 11 qt. container from the 13 qt. container - with the 10
qt. container (containing 3 qts of moonshine) floating in it, only
8 qts can be put into the 11 qt. container. The 3 qts. from the 10
qt. container can now be added to the 5 remaining qts. in the 13
gt. container - making up the last 8 qts.

Of course I'm assuming negligible weight for the 10 qt. container.

Lloyd Jim Steiger
Vallejo, California
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Dear Sir:

Brother Alfred, in his stimulating “Fun, Counting By Sevens”
(June RMM, page 11) points out that 882 (base 10) =7744, while
55% (base 7)=4444. It is interesting to note that in any system to an
integral base n, (mn+m)2?, where m=n—2, can be written as
(n—3)n*+ (n—3)n?+4n + 4.

Let mn+m represent a two-digit number to any integral base n
greater than 1, such that m=—n—2. Then

(mn+m)2=m?(n*+2n+1)=(n—2)2(n*+2n+1)
=n*—2n°—3n*+4n+4=(n*—3n*+n*—3n2) +4n+-4
=(n—3)n*+ (n—3)n2+4n+4

So if we restrict ourselves to n greater than 4, the consecutive digits
of the product desired are (n—3), (n—3), 4, 4. For example, by this
formula:

772 (base 9) —=6644.

Donald K. Bissonnette
Florida State University

Dear Mr. Madachy:

In respect to my Prime Generating Polynomial note (June RMM,
page 50) I would like to add that x?—x+41 is never a perfect square
except at x=41. I conjecture that it is never a perfect cube, fourth
power, fifth power, etc., up to 12th power inclusive.

Some one may be able to prove this for me.

Sidney Kravitz
Dover, New Jersey

PR
s R,

Dear Mr. Madachy:

_Thg claim by Mr. Kravitz in his article “Prime Generating Poly-
nomials (Jupe RMM, page 50) that “No polynomial can represent
primes exclusively.” is punctured by the following which was written
I’t\)gAr&lﬁ Cl}IA 1935 and published in the March 1952 SCRIPTA MATHE-

Consider N satisfying the following conditions:

~{1) N is of the form P,
. ai8x... 8a;
duct of the first n primes, including 1.
(2) Nis less than the square of the (n+1)th prime. Then every
such N is a prime number.
For example: Consider the first 4 primes 1, 2, 3, 5. We can form
the following prime numbers:

(2)(3) (5)=+=1==381 or 29
(1) (3) (5) =2=17 or 13 etc.

+a;ax...a, where P, is the pro-
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Proof: It is evident that no N is divisible by 2, 3, or 5 . Hence the
smallest possible divisor is the next higher prime, or 7 in this case.
Hence if N<7* it must be a prime.

It is evident that powers of the above factors apply also:

(5)(3)(1) + 25 = 47 (1)(5)(2) + 3 = 43
5)(2)(1) + 3 = 37 (5)(3)(1) + 28 = 23

Malcolm H. Tallman
Brooklyn, New York

Dear Mr. Madachy:

I am wondering if some RMM readers would know of any refer-
ences to the problem of coloring the edges (not the faces) of all the
regular uniform polyhedra, using three colors. E.g. all the faces of an
icosahedron are triangles and every triangle must have one side red,
one blue and one yellow. I have solved them all - have others done so,

too?

Leigh Mercer
London, England

If RMM readers who can supply this information will forward
such to the Editor at Box 1876, Idaho Falls, Idaho, he will see to it
that Mr. Mercer receives the letters.

Dear Mr. Madachy: 127
Does anyone know of a proof that the con- 721
tinued addition of a number to its reverse form 848
will eventually yield a palindromic number? It al- 848
ways does, many times, but what’s the proof? An 1696
example is given to the right with the resulting 6961
palindromic numbers in red type. One may start ——
with any number and one can continue the given 8657
example. The next palindromic number reached : _ 1568
will be 166876727678661. 16225
H. V. Gosling a2ogl

68486

Kingston, Ontario
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