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From the Editor

There is one bit of business the editor is obliged to take care of
immediately.

RMM is «a BIMONTHLY.

The implication that RMM is a monthly was perpetrated. by no
less than RMM itself! The Table of Contents page of the April issue
indicated that RMM was published monthly - this is an error. RMM is
a Bimonthly - once every two month:S - six times a yedr.

.- * ® * ®

The demand for the February (#1) Issue of RMM has long out-
stripped the supply. If there is enough demand the editor will under-
take to have that issue reprinted and revised (to protect the‘collecto.r-
item value of the original.) The sale price of the revised reprint WQI
have to be a full $0.65. If you are interested drop a postcard in the mail
box directed to the Editor, Recreational Mathematics Magazine, Box
1876, Idaho Falls, Idaho. Acknowledgement of all these requests can-
not be guaranteed but they will be filed away and.when tht? tot?.l
number of requests reaches a figure demanding }'epﬁntlng, a notice will
be placed in an issue of RMM.

% * # #

The editor would like to have the readers send in their answers
to the various puzzles and problems posed in RMM. All letters are
answered or acknowledged as soon as possible and, of course, all who
submit correct answers may have their names listed in the answer sec-
tion when a problem is held over from one issue to the next.

* * * *

Now let’s see what’s coming for the future: Brother Alfred will
lead us into the World of Large Numbers in the August issue. Num-
bers do not just get bigger - they often get more interesting!. Sl.dney
Kravitz, who told us how to solve Alphametics in the April issue,
will enlighten all of us with some mathematical comparisor{s of th.e
Christian, Mohammedan and Jewish Calendars. The editor will do his
best to publish the full, correct values of the eighteen Perfect Numbers.

1 June 1961 J.S.M.

Editor's Note: It is indeed fortunate that RMM
readers have an opportunity to read four articles by
well-known writers - each presenting some aspect of
number systems. J. A. H. Hunter introduces the series
with comments about number systems in general; F,
Emerson Andrews gives us a chapter from his forth-
coming book, Numbers, Please, on the dozen system of
counting; Brother Alfred, of St. Mary’s College, throws
some light on the interesting Base-1; and C. W. Trigg,
of Los Angeles City College, goes a bit deeper into cer-
tain properties of Base-7 numbers. We Enow you’ll en-
joy the following bit of pure recreational mathematics!

Nnmber Syotems for Pun

There’s endless fun in the study of number systems, and perhaps
more so in the comparison of different systems. But, before enlarging
on this theme, it may be as well to mention two very vital points
which are sometimes overlooked.

A number retains its particular identity and meaning, irrespec-
tive of how we name it or denote it in symbols. For example, what we
call “eleven” and denote in our base-10 system as 11, might be called

“kinkob kra” and denoted as 15 in Kalota where they use a base-6
system.

g. 04 GL/ Hunter

The other point is that our decimal-system words, and endings
such as “teen”, cannot be used meaningfully when describing numbers
written in the notations of other systems. We write the actual number
“seventeen” as 17, and we call it “seventeen”. In a base-15 system we
might denote that same quantity as 12, but it would be very wrong
for us to describe what we had written as being “twelve”: we should
describe it as “one two” or even as “one two in base fifteen”.

These two points may seem trivial, but no harm will have been
done by emphasizing them. And now let’s look into some of the leads
this whole field provides for the “fun” I promised.

Say we have a number, written in a base-m system as abc - a, b,
and c being digits written in that order. Then, the actual number so
represented has the value

am®+bm+c¢

From this it will be seen that numbers denoted in such ways as
100 (one zero zero), 121 (one two one), 144, 169, 196, etc., are always
perfect squares irrespective of the number system used.

Similarly, numbers denoted in such ways as 1000, 1331, 1728, etc.
are always perfect cubes in all number systems.

Conversion from one system to another raises many very interest-
ing points. Say we have a number, written in a base-m system as ab,,
and the same actual number written in a base-n system as ba,, the



RECREATIONAL MATHEMATICS MAGAZINE

appropriate base being indicated for clarity by the subscript. Then we
have, using normal algebraical forms,

am+b=bn+a
the general solution of which is:
m—=—kb+1
k being any suitable constant.
n=ka+1
FOI‘ example, 3511:531
This gives us such curiosities as:
127 p=— 214
28,, = 32,
34,s = 4310
4516 — 5413

Other amusing relations appear when we consider selected types
of squares. For example,

(446)2 + (456)2 = (5413)2 - (4413)2

The ancient Babylonians used what was essentially a base-60
system! Not very practical for calculating, when you remember that
in terms of more enlightened arithmetical operation it would -entail
not less than 59 different digit symbols as well as the necessary zero!
But, if we accept the theoretical possibility of systems based on very
large numbers, the following are examples of intriguing comparisons:

1235 = 3214

23432 — 43244
345107 = 54353
456164 = 654134
567233 == 765197
678314 = 876272
789407 = 987359
And, on similar lines,
13517 = 53 13
246,, — 642,;
35744 = 75329
468, — 864,
57983 = 97562
Also,
(12X 34) 250 = (43X21) 15
(23 X45)u43 :tc(54 X 32)835
etc.

Well, these brief comments may have given some hints as to the
possibilities for “fun” in this field. And, in the articles that follow, you
will find many more.

—_—4—

eMM gy DW * _‘By F. Emerson HAndrews

In baseball, a base is a safe place one strives to reach, and from
which one tries to advance; it is a “stepping off place.” In mathematics
the base is “the stepping off place” from which the whole system is
built up. Because fingers were used for practically all early counting,
we count up to ten, and then begin over again. Ten is our stepping off
place; we have a base-10 number system. It is so universal that it is
actuaély one of the few things in this world that has seldom been ques-
tioned.

However, the ten system is not the only one tried out by primi-
tive peoples. Some tribes used two - the pair. Their counting ran
like this: one, a pair; a pair and one, pair and pair; and probably not
much farther.

Twenty - all the fingers and all the toes - was an obvious base
in warm climates where people did not wear shoes or moccasins. The
Mayas in Yucatan had a highly developed counting system using
twenties. Fragments of it exist in our own language in words like
score, meaning 20.

But because a man always had his ten fingers and thumbs literal-
ly “on hand” as a counting machine, counting by téns became the
accepted way. True, it did not work out well for some special purposes,
and for these we have adopted other bases. For time, we use 12 for
the half-day and the number of months; five times twelve (60) for
sgccinds and minutes; and thirty times twelve (360) for degrees in the
circle.

In recent years we have invented gigantic calculating machines
which, because they run on electric current which is either positive or "
negative, are actually geared for counting by 2’s. They have reminded
us again that 10 is not the only possible base for a system of arith-
metic; in fact, it is a rather poor one.

Probably the most practical base we could have selected, if we
had thought of it in time, is 12. Indeed, 12 is such a handy number
that we use it in many of our measures and other practical matters
even now. We divide the foot into 12 inches; as already noted, the
day into two 12-hour parts and the year into 12 months; we sell many
things by the dozen because they pack so well that way. Indeed, we
learn 12 multiplication tables, even though our number system is
based on 10.

We do this because 12 has certain advantages which no other
low number possesses to such a degree. Consider its factors. Twelve
divides evenly into halves, thirds, quarters, sixths, and twelfths. (Ten

*Copyright © by F. Emerson Andrews, 1961
This article has been adapted from the book Numbers, Please by
Mr. Andrews to be published in July by Little, Brown & Company.

—_5—
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divides evenly only into halves, fifths, and tenths). In addition to
mathematical advantages, 12 has a number of practical ones. Consider,
for example, in how many different ways 12 eggs can be packed, as
compared with 10, or 7, or 13, or any other low number.

Tt may be interesting to explore 12 as a possible number base.

The Base Twelve

To use 12 as a number base requires inventing two new number
symbols. For simplicity let us use X for ten, and call it dek; let us
use € for eleven, and call it el. Here is the number system, with base-12
numbers in bold face.

I =1 ' 13 =11 30 =26
2=2 14 =12 36 =30
3=3 15 =13 48 — 40
4 =4 16 — 14 60 =50
5=5 17=15 100 = 84
. b=6 18 =16 130 = XX
7 =17 : 19 =17 143 — €€
8=28 20—=18 144 — 100
9 =9 21 = 19 365 = 265
+ =X 22 = IX 1,000 = 64
=8 . v 23 =1IE€ 1,728 = 1,000
12=10 24 =120 10,000 = 5,954

The only secret to handling the dozen system (duodecimal system
is the fancy name) is remembering that the second column to the left
represents, not tens, but dozens; the third column, not tens-of-tens,
but dozens-of-dozens; and so on.

Take the number of days in the year (865 or 265 ) which acciden-
tally looks almost like the regular number:

5days = 5

265 days = 6 dozen days = 72
2 dozen-dozen days = 288

365

It is even simpler to change ordinary numbers into duodecimals.
Simply divide by 12 over and over again, and the remainders are the
duodecimal number:

12 ) 365 12 ) 1848 12 ) 196
12)3045  12) 15440 12') 163+5
246 12) 124X 12) 1347
T 140 EY
Answer, 265 Answer, 10X0 Answer, 1175

—6—
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Addition involves no new steps by duodecimals. It is simply nec-
essary to remember that we add to a “dozen” before we carry I:

36 300 3121 34 — 3 feet, 4 inches
49 412 4996 2.8 = 2 feet, 8 inches
E ﬂ) §§3_>( _5_3 — 5 feet, 3 inches
x3 822 11X356 €3 =11 feet, 3 inches

Multiplication is actually simpler than by the 10-system, because
more of the products come out 0, and the duodecimal multiplication
tables are easier to learn. So that we can try out a few examples, here
is a base-12 multiplication table:

3 4 5 6 7 8 ? X €& 10
6 8 X 10 12 14 16 I8 IX 20

10 14 18 20 24 28 30 34 38 40

2

4

6 9 10 I3 16 19 20 23 26 29 30
8

X

13 18 21 26 28 34 39 .42 47 50
10 16 20 26 30 36 40 46 50 56 60
26 36 41 48 53 5BX 65 70
14 20 28 34 40 48 54 60 68 74 80
16 23 30 39 46 53 60 69 76 83 90

18 26 34 42 50 5X .68 76 84 92 X0

Rl oo w|lo|loal h|w| N
™~
)
N
S

IX 29 38 47 56 65 74 83 92 Xi €0

20 30 40 50 60 70 80 90 Xo €0 100

=)

Now we are ready to multiply:

22 231 X89
19 32 . 367
176 462 - 6313
22 693 9%03
396 7192 2823
366643

For some kinds of problems, especially those with feet or inches
or other “twelve” units, the work is much easier by base-12 arith-
metic than by our present methods:

How many square feet of carpeting are needed for a hall
14 feet 2 inches long and 3 feet 4 inches wide?

—_
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|4 feet 2 inches = 12.2 (I dozen 2 feet and two-twelfths)
3 feet 4 inches = 3.4 (3 feet and four-twelfths)

488

366

3€.28 (which is 3 dozen 1| (47) square feet,
2 dozen 8 (32) square inches)

. . .. th

By ordinary arithmetic it would have been necessary to turn bo
lengthg into inches (14 X 12=168, 168+ 2=170 inches; and 3X 12=36,
36+ 4=40 inches), multiply 170 by 40 to get 6,800 square inches, and
then divide by 144 to get square feet.

About Duodecimals

Because the decimal is used both for decimal-form fractions and
the whole system of counting by tens, people sometimes jump to the
conclusion that the handy ‘“‘decimal” way to express fractions is a
special advantage of the “decimal” system of counting.

This is not true. Provided a zero symbol is used, any number
base can express fractions by using the same numbers to the right of
the point. In the multiplication example above we have seen twelfths
so expressed. In fact, duodecimals (twelfths) are much more efficient
than decimals (tenths) for the expression of many low and much-
used fractions, and permit a more accurate expression of nearly all
fractional quantities with the use of the same number of places after

oint.
the pConsider the low fractions in this table:

Decimal Duodecimal

One-half .5 )

One-third 333333 . .. 4
One-fourth .25 3

One-fifth 2 249724 . . .
One-sixth 166666 . . . 2
One-seventh 142857 . . . .186%35 . . .
One-eighth .125 16

One-ninth AT ’ 14
One-tenth R 124972 . . .
One-eleventh 090909 . . . ...
One-twelfth 083333 . . . A

—8—
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In this table, fractions are carried out to six places where not
terminating. All the six-place figures keep on repeating, producing over

and over again the first dotted figure, or the several figures included
between dots.

A glance reveals that the 10-system has in this sample one and a
half as many endlessly repeating numbers as the 12-system. More-
over, in the cases of both one-fourth and one-eighth it requires an ad-
ditional figure to express accurately the same fraction.

What about per cent? We have got used to using percentage
(one-hundredths) as a general approximation. We say “about 25 per
cent” of the pupils had a perfect attendance, which says, literally,
25 out of every hundred; but really means a proportion - 1 out of every
4, 2 out of every 8, and so on. If we used duodecimals, what would
happen to percentage?

We would lose the name, that is all. We might call it per gross,
because now it would be so many out of each 100 (144). And it would
be a good bit more accurate than percentage, for now with only two
figures we could express the nearest 144th.

Indeed, the advantages of duodecimals are so great that a society,
The Duodecimal Society of America, was formed some years ago just
to promote further exploration and use of the duodecimal system -
counting by dozens instead of by tens.

It is doubtful that the world will again change its system of num-
bers, though a few centuries ago Europe changed from Roman to our
present Arabic numerals. But it is fun to experiment with a different
system that in many respects is better, and to realize that the final
word has by no means been said even in arithmetic. Important dis-
coveries are still possible. '




Pon, Counting by Sevens Brother HAlfred

Is your taste for numbers becoming jaded? Is your pristine en-
thusiasm waning from meeting the same old familiar relations? Does
it pall on you that 2 plus 2 always equals 4? Then, why not try work-
ing number systems with bases other than ten? For example, in base
4, 2 plus 2 equals 10, while in base 3, the answer is 11.

These few notes will deal mainly with base 7, but for every fact
mentioned here, a line of inquiry is opened up in number systems to
other bases as well. To one and all we say: Happy Hunting!

FUNDAMENTALS OF BASE 7

As a start, we shall mention a few basic ideas which will be suf-
ficient to enable any one to follow the developments in these notes.
First of all, we have to learn to count. To show how this goes, we list
the first numbers in base ten and base seven.

BASE 10. 1,2,34,56, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22
BASE 7. 1,2,3,4,5,6,10,11,12,13,14,15,16,20,21,22,23,24,25,26,30,31

The interpretation of a number to base 7 is entirely similar to that of
a number to base 10. Thus, in base 10, the number 746 means:

(7%10%) + (4 x10) +6
In base 7, the number 352 means:
(3x10%) + (5x10) +2

but we have to understand that 10 here means 7 ip our number
system. Hence to find the value of this number 352; in base 10, we
make the following calculation: (3X72)+ (5X7)+2

One other thing is needed in order to proceed with calculations in
a number system other than that-to base 10, namely, tables of the
basic addition and multiplication facts for the digits. For base 7, these
tables follow.

ADDITION COMBINATIONS
BASE 7

1 2 3 4 5 6
1 2 3 4 5 6 10
2 3 4 5 6 10 11
3 4 5 6 10 11 12
4 5 6 10 11 12 13
5 6 10 11 12 13 14
6 10 11 12 13 14 15

—10—
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MULTIPLICATION COMBINATIONS
BASE 7

3 4 5 6
3 4 5 6
6 11 13 15

6 12 15 21 24
11 15 22 26 33
13 21 26 34 42
15 24 33 42 51

W DO DO

Od| Ot x| GO DO =] =t

) G x| CO| DO} =

The arithmetical processes in base 7 are carried out precisely as those
of base 10 except that the above tables are used instead of the cor-
responding addition and multiplication tables for base 10.

We may now proceed to our number facts and curiosities for base
7.

(1) In base 10, we have a curious relation
12345679 X9 = 111111111
Is there a corresponding fact for base 7? Yes.
12346 x6 — 111111

(2) For base 10, 882="7744. The corresponding relation in base
7 is still more interesting, being 552 — 4444,

(3) In our ordinary number system, we have a process called cast-
ing out nines. If we are adding columns of figures, for example, we add
the digits and keep eliminating nine from the sum, eventually arriving
at a number less than nine. This should be the same sum as the sum
of the digits in the answer with the nines eliminated. Such an opera-
tion provides a check on the work inasmuch as a discrepancy means
there must be an error.

We illustrate casting out the nines for multiplication. Consider
the product 843539376=79086560. The corresponding multipliers
after eliminating the nines give 2 X 7=14, the sum of the digits in this

p}'odugt being 5. Casting out 9’s in the product 79086560 likewise
gives o. '

~ For base 7, we have the corresponding process of casting out
sixes. This will be illustrated for addition.

342
153
206
144
320

1531

—11—
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The practical way to eliminate sixes is to go by combinations adding
up to six. Thus, in the first line 42 is dropped; in the second, 15; be-
tween the first and second 3 and 3; and so on. The net result is 4 which
agrees with the sum after the six in 15 has been eliminated and 3 is
added to 1.

The procedure for multiplication is the same as shown for base 10.

(4) In base 10, if we take any number, such as 4821 and put
the digits in any other order, such as 8124, the difference
8124 —4821—=3303 is always a multiple of 9. In other words, after
casting out 9’s from the difference, we obtain zero.

Similarly, in base 7, take any number, such as 3524 and place the
digits in another order, such as 2435. The difference 3524 —2435—=
1056 is seen to be zero after casting out 6’s; in other words, it is
divisible by 6.

(5) In the February 1961 issue of RMM, the editor pointed out
several examples of reversible primes and permutable primes. In base
7, for reversible primes we have the pairs: 14, 41; 16, 61; 23, 32; 25, 52;
56, 65: Only four two-digit primes are not reversible.

The highest number of permutable three-digit primes in base 10
is found to be four*; for base 7, three examples of four permutable
three-digit primes and one example of five permutable three-digit
primes were found. These examples are: 245, 254, 452, 524; 326, 362,
623, 632; 346, 364, 436, 463. The five permutable three-digit primes
are: 124, 142, 214, 241, 421. -

Another interesting curiosity: Two consecutive prime numbers,
namely, 245 and 254, have the same digits!

(6) In base 10, the only fractions having a terminating decimal
when evaluated are those with denominators of the form 225", If there
is any other prime factor in the denominator besides 2 or 5, a repeat-
ing, non-terminating decimal results.

What is the situation in base 7? Only those denominators of the
form 10* give rise to terminating decimals. All others produce non-
terminating decimal expressions. For example, */,=.3333....

112==.0630563053.....

The process of going from a repeating decimal to the equivalent
fraction in base 10 consists in putting the periodic numbers over a

* 179, 197, 719, 971; 379, 397, 739, 937.

In Base-11 there are three digits with all six permutations giving
primes. If we represent the tenth digit in the base-11 system by X the
six numbers are: 3X6, 36X, 63X, 6X3, X36, X63. The corresponding
values in the base-10 system are 379, 439, 769, 839, 1249, 1279 - all
primes, of course.

—19—
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ent fraction is:
142857 _ 1
999999 ~— 7

The equivalent procedure in base 7 is to place the periodic num-
bers over a corresponding number of 6’s. Thus the fraction that equals
the periodic decimal .014301430143..... is ' :

143 1
6666 — 42
The fraction equalling the decimal .033033033.... is
38 _ 4
666 111

(7) We come now to a major curiosity. In base 10 we determine
whether a number is odd or even by examining the last digit. Not so
in base 7. Here, a number is even, if the sum of its digits is even; odd,
if the sum of its digits is odd. The result is that no matter how we
permute the digits of a number in base 7, we continue to get an even
or odd number depending on what we started with.* As an example, we
work out the corresponding numbers in base 10 of the six permuations
of the base 7 number 134:

134;= 49+21+4+4="74
143,= 49428+ 3=80
314,=147+ T7+4=158
341,—=147+428+1=176
413,=196'+ 7+ 3=206
431,=196 +2141=218

A corresponding example for odd numbers is 234.

234,= 98+2144=123
243,— 98+28+3=129
324,=14T7+14 +4=165
342,=147+28+4-2=177
423,=196 + 14 + 3=213
432,=196 + 21 4-2=219

*  Simple Simon touring through Blunderland met a x-man casting

up a sum.

“344 and 526 is 1208,” said the =-man.

“Really?” asked Simple Simon, “Do two even numbers always
add up to an odd number in Blunderland?”’

The =-man replied, “Not always. We like variety in our arthmetic
processes and so we use base-7” .

“But how did you get two even numbers to add up to an odd
number?”’ asked Simple Simon.

“It was really quite simple, Simon,” said the =-man. “The truth is
that I added two odd numbers and got an even number.”

—13—
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This leads to some interesting speculation. What number systems act
like 10? What systems behave like 7? Do some number systems have a
still different pattern for determining odd and even numbers?

(8) In the February 1961 issue of RMM (pp. 38-42), the editor
gave over a hundred ways of arranging the digits 1 to 9 in order so as
to give a value of 100. The same will be done for base 7 using entirely
similar agreements and understandings. Warning to the reader: From
here on in this section, everything will be to the base 7. Helpful hint:
If you find yourself confused, look to the postscript of this list.

Speaking then in base 7, the intention is to arrange the digits
1 to 6 in order with appropriate signs interspersed so as to give a total
of 100. We shall also offer 100 examples of this type.

(1) -14+2+3+4+56

(2) 12+3—4+56

(3) 1+2++34+56

(4) (1)(2)(34)+5—6

(56) 1*+3+4+56

(6) —(1)(2)+3+—(5)(6)
(10) —1(2+3) +4!+ (5) (6)
(11) 142434+ V4+56

(12) 1—(2) (3) +4!+ (5) (6)
(18) 1—23+4!+56

(14) 12+3!+4+ (5)(6)

(15) 1(2+38)+4!+(5!=86)
(16) —1+(2)(3) +4!+ (5!+6)
(20) 1—2+3!+4!+ (5!+6)
(21) —1+2—814+4!1+(5)(6)
(22) vV —1+23+4+56

(28) V12++/34+56

(24) 1(2+3)+4(5+86)

(25) 1—2+38!4-4(5+6)
(26) (1)(2) +38+4(5+86)
(30) 1—(2)(3)+(4+5)(8)
(81) —1(2+38)+ (4+5)(6)
(32) —1+2—3!+(4+5)(6)
(33) —(1)(2)—3+(4+5)(86)

— 14—
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(34) (—1+2%)(—4+5+86)
(35) [1+(2)(3)][—4+5+6]
(36) 1+[(28)**][6]
(40) 14+(2)(3*)—5!+6
(41) 1+42°4-=4+(5)(6)
(42)  (1)(2%) + (4) (5) +36
(43) 1—2+(3)(=4) + (5! +6)
(44) —124(3)(=4) + (5! +6)
(45) (12)(=8) +4—35+6
(46) 1—234(z4)(5) +6
(60) —1(2+38) +(4)(=5)—6
(61) 1—(2)(3)+ (4) (=5)—6
(62) 1—(=2)(28) +(4)(=5)+6
(63) —1(23) + (4)(z5) +6
(54) (1+2+8)(z4)—5—6
(55)  —(21)(22) + 23+ 34+ 35+ 36
(66) —1—24+323+34-L35+36
(60) —1!—2!4+3!+54+35+36
(61) —1!4+2—3!1+41+ (5)(6)
(62) 1!—2!+38!+4!+ (5! +6)
(63) (12+3)(4)—5+6

(64) 123+4—=5—6

(65) (12)*—4+5+36

(66)  (1+2)*—4+5+36

(100) (—14+2+3)(z4)+35—6

Postscript

. The sum of each of these expressions is 100, or 49,,. This explains
likewise the relative shortness of the list and demonstrates one of the
adv:mi‘lagges of base 7: To get a series of 100 items, we need only go
up to 49!

Here’s hoping you have fun discovering more number facts in
base 7. And remember, as Mr. Hunter has indicated, there are
many other number worlds to conquer.
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|4 Jz73 +5-¢+7¢89
-HREVSFReT

(~)(2)+3+4+ (9()

1273 st 647819
[(+2)+¢3)]

“SAY PROFESSOR - WOULD YOU LIKE TO SEE
SOMETHING INTERESTING?”’

Two pints make one cavort.

Terminal Digits of MN (M?—N?)

In The Scale of Seven
By Charles W. Trigg

If M and N are integers, the unit’s digit of
P=MN(M*—N?) = MN(M+N)(M—N)

is dependent upon the unit’s digits of its four factors. Represent the
unit’s digits of M, N, P by m, n, p, respectively. These terminal digits,
treated as signless numbers, fall into two square arrays, one for M=N,
the other for M=N.

In the scale of notation with base seven*, p is zero if m, n, or
(m—n) is zero, or if m4+-n=10. E.g, if m+n=>5+2=seven—10.
These zeros constitute the diagonals of the square arrays of the values
of p for non-zero m and n. Thus:

=

moroorw|w |V
4
=

wWooo vk fw |A
A

8

o}
CRNWHR O |

O OU QO DN = :’/B

OMFBRWNO |
OO =[N
RO ONW kK™
HONORROM | W
OMHWhkHOl®

HoNMOIOo |
wrooo U | A
connvoolnm
OO |O®

(o205 FUNEJL Y

These two arrays are intimately related in that they are mirror
images, one goes into the other by rotation about a main cross-diagonal
(upper right to lower left), and the corresponding elements of the two
arrays are complementary, e.g., 44 3—=seven—10.

Each array has the following properties:

a) All seven digits in this scale of notation appear, each
non-zero digit appearing 4 times.

b) Elements symmetrical to the main diagonals and those
symmetrical to the perpendicular bisectors of the sides are com-

pPlementary.

*In the discussion of the arrays to the base seven, numbers in that
scale are expressed as numerals. Those expressed by names are to
the base ten.

—17—
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c) Thus the array contains four rectangles, congruent in
pairs, with sides parallel to the diagonals and vertices on the sides
of the array. In each case, the sum of the vertices is 20. The sum
of the elements on each of two opposite sides is 10, and on each
of the other two sides is 20. Hence, the sum of the elements on
each perimeter is 40.

d) The array consists of three nested squares with sides
totaling 20, 10 and O, respectively.

e) The sum of the elements in each column and each row
of the array equals 20.

f) The array is symmetrical to its center, and like elements
lie at the vertices of nine squares. The 2’s at the vertices of one
square may be traversed by knight’s moves. The same may be
done with the 5’s.

g) Each 2 is connected by knight’s moves to a 1 and a 4 in
such manner that the three elements whose sum is 10 lie on a
straight line. Likewise each 5 is connected by knight’s moves to
a 6 and a 3 in such a way that the three elements whose sum is
20 lie on a straight line.

h) The diagonals divide the array into four triangles each
of which contains the six positive digits. In each group, the path
of the joins of the digits in order makes a symmetrical “knot.”
Otherwise, the path consists of knight’s move, three sides of a
square, and another knight’s move.

i) The perpendicular bisectors of the sides divide the array
into four 3x3 sub-arrays each of which contains all the digits ar-
ranged in a pattern consisting of a diagonal of zeros and three dif-
ferent complementary pairs symmetrical to this diagonal. The
sum of the elements of the sub-array accordingly is 30.

j) Proceeding around the array, each sub-array goes into
the next sub-array by a 90°-rotation. This is equivalent to stat-
ing that the array goes into itself by a 90°-rotation.

k) In each sub-array, the path of the joins of the digits in
order forms a three loop “knot” of isosceles right triangles.

1) Each sub-array considered as a determinant has an ab-
solute value of 120. The values of the cornered minors form a

—6 156
5 —13

m) The value of the sixth order array as a determinant is
Zero.

determinant, e.g., \ with value zero.

RECREATIONAL MATHEMATICS MAGAZINE

. 1n) The array** may be viewed as the composite of twenty-
five overlapping second order arrays. These second order arrays
may be evaluated as determinants, e.g.,

0 6
[1 0‘2—6’

6 3| _ 3 4 | _
6 2‘_15,l2 5|_10,etc.

‘These values in order constitute a fifth order array, which
vanishes when evaluated as a determinant. That is,

—6 15 10 —b 6
5 —13 0 13 —15
—10 0 0 0 —10
—15 13 0 —13 5
6 —5 10 15 —6

I

0.

When the same procedure is applied to this array to produce
a fourth order array, again to form a third order array, and again
to form a second order array, the determinants of each of these
arrays vanish.

. 0) The original array may be treated as the composite of
sixteen overlapping third order arrays, and each of these evalu-
ated as a determinant. The absolute value of the determinant of
the fourth order array thus obtained,

120 50 20 —120
—20 0 0 —50
—50 0 0 -—20

—120 20 50 120

When the same procedure is applied to this array, the second or-
der determinant obtained vanishes.

is 12 X 10¢.

p) Th(_e determinant of the third order array composed of
the d.etermmant values of the nine overlapping fourth order ar-
rays is :

—100 300 —100
300 0 300 = 0.
—100 300 —100

q) Each determinant of the four overlapping fifth order
arrays has the value 12 X103, Hence the second order determinant

**The derived determinantal arrays from the M=N array go into
the arrays derived from the M=N array by interchanging co-
lumns and rows. Hence the conclusions hold.
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formed from these values vanishes. Note that 12X 10% as well as
the non-zero values of the fourth order determinants in p) exactly
divide the determinant in o).

OTHER SCALES OF NOTATION.

The values of p which appear in the arrays for various scales
of notation are: :

Number base p Number base P
two 0 seven 0123456
three 0 eight 0246
four 0 nine 036
five 01 4 ten 046
six 0 eleven 0123456789X
twelve 06

So seven is the smallest base for a scale of notation in which all
of the digits in the scale appear in the arrays. Only zeros appear in
the arrays for the scales of two, three, and six. Only even digits appear
when the number base is even. In the decimal scale and when the
number base is odd, the non-zero digits which appear may be grouped
into complementary pairs. In the scales of four and twelve, the only
non-zero element is half the base, while in the scale of eight a com-
plementary pair also appears.

The arrays for the decimal scale have been discussed in Mathe-
matics Magazine, Vol. 34, pp. 159-160, 233-235, (1961). The array for
the duodecimal scale appears in the Duodecimal Bulletin, Vol. 14, No. 2,
p- 4X (Dec. 1960).

— 20—

Wornd Games

“7” LETTER SCRAMBLE

Mr. J. S. Madachy, the editor of RMM, recently wrote to me and
said that the “7” Letter Scramble games are fine, but more teasers are
needed. I sent him the list of seven words shown here, scrambled, and

told him that when properly
EINNGRT unscrambled they really be-
AENG T | H Jongin the class of teasers.
IANSTEG Editor Madachy immed-
IMANGES iately wrote back and said
the solution is much too
NITKLEGA easy- the words are similar
|l RRG ANE and all end with the same
AGG INST letter. Of course, Mr. Mad-
achy was wrong and with

the right solution none of the words will end with “G”.
Let’s see how many readers can find both of the solutions hinted at.

CHANGE A LETTER

Another teaser. You must go from PRE-
TEND to ECHOISM in exactly six chan-
ges, forming five new words between the
two given. Each change must be of one
letter only. If we had started with START
we could change “R” to “E” to make
TASTE, then change “S” to D” to make
DATED, and so one, making only one let-
ter change at a time.

Mr. Baker would like to have the readers of RMM send their
answers to the word games directly to him at 265 Vitre Street, West;
Montreal 1, Quebec; Canada. He will reply to all letters.

The answers to the April issue Word Games.
Words All Ways: See Figure 1 below.

Words Between: The other eight-letter word formed by rescramb-
ling MOLDIEST is MELODIST. To go from MOLDIEST to I, Mr.

[;5 S, Baken

PRETEND

NP O b | |~

ECHOISM

(123 clL{t]s]T]EN

d1lule T{H[e[r]e]4]T

sluitiL]elmls

2|A|NJA plajo|r|o|n|E

slp|AlR NEINGE

RIE[A|L|T|S[T

4/|S|U|B LIN|G|R[A|7]E
Figure 1 ~ Figure 2
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Baker gives MOLDIEST, MODISTE, DEMITS, TIDES, TIES, TIE,
IT, I

Edith Marsh of Montreal West, Quebec, gives MOLDIEST, MILD-
EST, SMILED, MILES( or LIMES), MILE, MIL, MI, I. W. A.
Robb of Ottawa, Ontario gives MOLDIEST, MILDEST, MISTED,
TIMES, EMIT, TIE, IT, 1.

“7” Letter Scramble: See Figure 2 on page 21.

Change a Letter: To go from CLAIMED to RATABLE, Mr. Baker
gives CLAIMED, DIALECT, ARTICLE, LATICES, BESTIAL, LAB-
IATE, RATABLE or CLAIMED, CLIMATE, RECLAIM, REAL-
ISM, REALIST, BLASTER, RATABLE.

W. A. Robb of Ottawa, Ontario gives CLAIMED, MIRACLE,
CARLINE, CARIOLE, ARTICLE, TRIABLE, RATABLE.

The other words possible for line 1: TINGLES, SINGLET. For
Line 2: THEATRE. For Line 3: RUSTLES, RESULTS to which W.
A. Robb adds LUSTRES, LUSTERS, TUSSLER. For Line 4:
APRONED. For Line 5: EMIGRES, REMIGES. For Line 6: RE-
TAILS, SALTIER to which W. A. Robb adds TAILERS. For Line
7: TEARING, GRANITE to which W. A. Robb adds TANGIER.

Mathematical Permutacrostic
Charles W. Trigg

When permutations of the letters of an ordered series of words
or phrases form in order a series of words in which a specified set of
letters, one from each word, form an acrostic, i.e. a2 word or phrase,
the resulting array appropriately may be called a “permutacrostic.”
Each of the following 23 phrases is a permutation of the letters of a
mathematical term. The first letters of these terms in order spell out
an interesting activity.

( 1) Large Cent (13) Same True Men
( 2) Sell Pie (14) I Chart Time

( 3) So Nice (15) Rent Tan Candles
( 4) No Lariat (16) They Nose Up

( 5) Ox In Aspens (17) To Taxi Or Plane
( 6) Gave Ear (18) Main Loom

(7)) I RestIn Cot (19) Pity Mascot

( 8) Deer Meat In Tin (20) Met Hero

( 9) Do Not Reach (21) I Get On Train
(10) A Rum Tenor (22) Tomato In Cup
(11) A Girl Tenant (23) Lips Reach

(12) Are Tall

Solution is on page 27.
—22— ) N

Tie Game ¢a HOT

The following simple game was invented for the purpose of help-
ing illustrate for beginners, the significance of analytical geometry,
i.e. the importance of establishing a correspondence between concepts
and results of geometry and those of algebra.

gy Leo c’l/(oau

The game is called HOT and is played by two players using a set
of 9 cards, each bearing one of the words - hot, hear, tied, form, wasp,
brim, tank, ship, woes. The cards are placed face up and the players
take turns picking up cards, one at each turn. The first player who
can announce that he holds three cards having a common letter wins.
If, after all the cards have been picked up neither player holds such
a set of three cards the game is a draw.

Although the game is at first unfamiliar it is clearly not very
complicated and one should be able to master it after an hour or so
of study. It will be found that with correct play the game should end
in a draw but an ‘expert’ player will have little difficulty in beating
a beginner, particularly if he has the first move.

In spite of the fact that this game is in some sense a new one,
it is essentially the same as the well-known game .of Naughts and
Crosses or Tic-Tac-Toe. This latter game is played on a ‘board’
which looks like this

Here the players take turns entering zeros and crosses into the
squares. A player wins if he can get three of his symbols entered in a
line, i.e. a row, column or diagonal. The theory of this game is, of
course, very well known and even many small children are masters of it.

Now we can establish a correspondence between HOT and Tic-
Tac-Toe as follows:

hot | form | woes

tank | hear | wasp

tied | brim | ship

Make the picking up of a word in HOT correspond to placing
your mark on that square of Tic-Tac-Toe in which the word lies in
the above diagram. It is easily verified that following this prescription
you will win, lose or draw the game of HOT under the same circum-
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stances that will cause you to win, lose or draw respectively in the game
of Tic-Tac-Toe. Thus the correspondence established by the diagram
makes any expert in Tic-Tac-Toe an expert in HOT and vice-versa.
Any knowledge of one game can be translated into knowledge about
the other. The two games are, in a very real sense, the same game.
Similarly, the discovery of Descartes amounted to discovering the
fact that the games of algebra and geometry, which had been played
for two thousand years, and which are even today by no means {ully
understood, are in fact two aspects of the same game.

GOOF - A Game to Begin U Games
William Bunge

Goof is a game that generates games., The game that generates
games operates on certain basic “principles” which govern the genera-
tion of “rules” which determine the character of the game. One prin-
ciple places certain physical limits on the games to be generated. For
instance, the games may be confined to a card table and the use of
playing cards. This is to prevent players from generating rules such
as “run quickly around the block.” Another principle starts the
game, similar to the instructions necessary to start computers. The
start might be given to the player who draws the highest card from
a deck of cards. The start consists of giving that particular player the
opportunity to make the first rule. Another principle is that no rule
can be made which makes it impossible to win the game. Another
principle is that no rule can be made that contradicts any other rule.
Another principle is that anyone who violates a principle or an estab-
lished rule has “goofed”” and the first person to recognize the mistake
by saying “goof”’ has the right to the offender’s turn. A “turn” consists
of the actual playing of the game and the generation of another rule
to develop the game. If a player says “goof”’ and there has been no
goof, then another player can say “goof” on the person who originally
said “goof.” The false goof sayer looses his turn when it comes his
turn to the second goof sayer. The second goof sayer might in turn
be mistaken since the first might be correct. If so he suffers the same
treatment as the first, etc. Disputes are settled by votes of the players
after discussion. Another principle is that no rule can be implemented
that does not give all players an equal chance.

The games are fascinating. Unheard of card game rules are
invented and mixed with standard bridge, poker, etc., forms. The
sense of the game’s direction, i.e., what it takes to win, is constantly
shifting as the game develops. .

—24——
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A sample game might be generated as follows:

__1.The playqr who at random drew the highest card starts the game
with the following rule: “The game will be played in alphabetical
last name order.” S

2. The second player, that is, the one whose last name is nearest
the beginning of the alphabet, makes the following rule: “All the cards
will be dealt counterclockwise around the table.”

3. The third player’s rule is, “All players will pick up their hands
face down so that everyone except the holder can see the cards.”

4. Etc.

) It_ seems that serious purposes might be served by Goof, espec-
1a11y since Goof seems to bear close resemblance to the manner in
which mathematics itself grows.

PI PARADOX by Maxey Brooke

_The reciprocal of any odd number can be expressed as a repeating
decimal.

_The sum or difference of two repeating decimals is a repeating
decimal.

7714:1'—113+1]5"—1I7+1/9_1/11+ LI (Liebnitz, 1674, but knOWIl
earlier)

Thus =/, can be expressed as the sums and differences of a series
of reciprocals of odd numbers. Consequently = can be expressed as a
repeating decimal. Therefore = is rational.

But = is transcendental. (Maxey Brooke)

) Iqterested in obtaining the first (February 1961) RMM? See
Editorial on page 2. '



Alptiametico

Here are several Alphametics for your fun and enjoyment - answers
to the April puzzles follow on the next page.

The answers to this month’s Alphametics will be given in the
August issue of RMM.

MOON
ME N This certainly won’t be easy! But it can be
CAN done. (J. A. H. Hunter)
REACH
A vexing problem, we’re sure! (V) (VEXATION = EEEEEEEEE
(G. Mosler)
As Shakespeare very nearly wrote:
ALLS
WELL
But, we ask, what’s SWELL if you have no one? THAT
(D. Murdoch) E NDS
SWELL
UN Et voila une alphametique! Every French stu-
U N dent will be able to agree that the addition of
DEUX one, one, two and twelve amounts to sixteen -
DOU ZE but what different figure does each letter re-
SEILZE present if SEIZE is itself very properly divisible

by 167 (D. Murdoch)

SOME ALPHAMETICAL DOGGEREL By Derrick Murdoch

A PINT plus a PINT makes a QUART;

Of that fact you must first be aware.

Now we ask you to find just for sport
What is QUAINT when your URN is a square?

Or, since it’s easy to vary solutions when playing around with
liquids:

A PINT plus a PINT’s still a QUART,
Though a half PINT now gives you at DIET.
That should let you decide what you ought
To make of a DAIQUIRI. Try it!

— 96—
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Here are the April issue answers:

ALL)FOOLS)DAY 388 ) 91180 ( 235

X X 776

x Ax x 1358
xx Mx = 1164
x x B x 1940
X X XS 1940
RMM 633
SLY 127

X X X X 4431

x xR x = 1226

x x M 633

GAMES 80391

(A) (SPADE) = FLUSH = (5) (13582) = 67910

_ Since the statement given says that the winning hand (a FLUSH
in this case) was filled by a card represented by A, then the tatol
of 6 letters in A FLUSH must represent only 5 cards and, therefore,
one of the letters in FLUSH must be a one (A cannot be a one). The
only other solution fulfilling this condition is (4)(17453) = 69812,
but this would mean indicating a Queen by the notation 12 which
is seldom done.

SOLUTION OF PERMUTACROSTIC FROM PAGE 22.

( 1) Rectangle (13) Measurement
( 2) Eliipse (14)  Arithmetic

{ 3) Cosine (15) Transcendental
{ 4) Rational (16) Hypotenuse
( 5) Expansions (17)  Extrapolation
[ 6) Average (18) Monomial

( 7) Trisection (19)  Asymptotic

( 8) Indeterminate (20) Theorem

[ 9) Octahedron (21) Integration
(10)  Numerator {22) Computation
{11} Alternating {23) Spherical

(12) Lateral



Fhe FHaunted (heckerboarnds

d’/(axsy B’Looﬁz

My son, Jamie, is at the age of jig saw puzzles. He is too young
to handle the three-hundred piece store-boughten variety. My wife
handles the problem by pasting pictures on cardboard and cutting
them into large uncomplicated shapes.

You might think the market would eventually become saturated.
But then, you don’t know Jamie’s capacity for losing one piece of a
puzzle and needing a new puzzle . . . desperately.

The other evening I was trapped into becoming a puzzle-maker.
I needn’t go into the mechanics of being trapped. Married men will
understand and bachelors won’t care.

Anyway, with my usual cunning, I invented a new puzzle. Rather
than go to the picture pasting routine, I found some old checkerboards
and cut them up. The results looked something like this:

\\\\\

| VA

“Now, put them back together.”

I resumed my interrupted reading. But not for long.
“Daddy, is this right?”

I looked over my paper ready to smile indulgently. But the smile
died in mid lip. Out of two eight-by-eight checkerboards containing
sixty-four squares. Jamie had produced two five-by-thirteen rectangles
containing sixty-five squares each!
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I got down on my hand and knees beside him and examined them
carefully. Then I scrambled the pieces up and said, “Let me see you
do that again.”

\\;

This time I didn’t take my eyes off him. I was going to see where
the extra squares came from. But instead of rectanges he came up

with these odd-looking shapes.
\\ \\\
o
H AR
v m
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L v
E B l%

l&l\
m

And when I counted the squares, there were only sixty-three in
each set-up!
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Now, I'm not one to let a six-year old boy get too far ahead of
him.

I junked those checkerboards and got some others. (Fortu-
nately my friends kept me well supplied at Christmas.) Exercising
much ingenuity, I cut them up like this:
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Then I sat down and awaited results. I got them. Jamie ended
up with eight-by-eight squares, alright. But there were gaping holes
in the middle . . . a total of four squares had disappeared!
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\

I know when I’'m licked. I now paste pictures on cardboard. That
way I don’t endanger the laws of physics - or my sanity.

- .

Hathematics of Music by Al R. Amir- Motz

Though music may seem far removed from what many think are
the cold logical aspects of mathematics, nevertheless, music, with its
emotional appeal, has a mathematical foundation. The following article
will show how highly mathematical are the sounds, the scales and the
keys (the parts, so to speak) of music.

1. Harmonics of a Sound: When a sound is made, for example, by
striking a string of a musical instrument, each particle of air next to
the source of the sound vibrates. We shall call the number of vibra-
tions of that particle of air in one second the number of vibrations of
;c)he sound. The larger this number is, the higher the pitch of the sound

ecomes.

Suppose a sound is called C, and its number of vibrations is c.
That is, if, for example, the sound C makes a particle of air vibrate
five hundred times in one second, we say ¢=500. It was discovered by
Greek mathematicians that if after the sound C is heard we make
another sound S whose number of vibrations is twice the number of
vibrations of C, i.e., 2c, then S will be pleasant to hear. As far as the
history of mathematics shows, this idea is due to Pythagoras. The
sound T with three times as many vibrations, i.e., with 3c vibrations,
is also pleasant to hear after C. This fact is true for sounds with vi-
brations c, 2¢, 3¢, 4c, 5c, etc. Usually, if we play these sounds succes-
sively in some order with a certain rhythm, we call it a melody. If
we play a few of these sounds together, we call it harmony.

We shall call the sounds with vibrations 2c, 3¢, 4c, etc. harmonics
of C.

2. A Primitive Scale: In the work of Omar Khayyam®*, it is
mentioned that the study of the ratios of integers is essential for the
science of music. That was the only mathematics used in the Greek
theory of music. To explain the idea, we start with the sound C, and
we suppose that C, is the name of the sound with 2c vibrations. Let
us call G; the sound whose number of vibrations is 3c. (We shall
explain why we have chosen these names.) If a sound with twice as
many vibrations is a harmonic of a given sound, it is reasonable to
believe that the sound G with one-half as many vibrations as G, is a
harmonic of C. Thus we can say that the sounds C, G, and C, are
harmonic of one another, and their vibrations are, respectively, c, 3¢/,,

*Omar Khayyam, “Discussion of Difficulties in Euclid,” Scripta
Mathematica V. 24, pp. 275 - 303 (1959).
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and 2c. We can compare these sounds and their vibrations by con-
structing the following table.

Sound C C,

rofed | @

2

The first line of the table shows the name of each sound, and the
second line shows the corresponding number of vibrations. For ex-
ample, under G we see */,, which means that G has 3¢/, vibrations in
a second.

The names chosen here are actually those chosen in the scale.
If C is the natural C of the scale, then G has ®/, as many vibrations
as C. C, is the next so-called C, which is usually called the octave of C.

In this scale we have only three sounds. If we play C, G, and the
octave of C on the piano, we can almost see how they sound. Of course,
we cannot make much music with three sounds.

3. Oriental Scale: Let us extend the idea of section 2 further. We
take the fifth and seventh harmonics of C, i.e., the sounds whose num-
bers of vibrations are 5¢ and 7c. We call these sounds, respectively,
E, and K,. We shall explain the choice of the subscripts shortly. Let
us compare these sounds with C,, the octave of C, and with C., the
octave of C,. Note that 2c is the number of vibrations of C,, and 4c¢ is
the number of vibrations of C.. Thus, if E, is a sound with half as
many vibrations as E.,, then we see that 5%/, is the number of vibrations
of E,. Similarly, we can choose a sound K, whose number of vibra-
tions is 7/,. If we compare these sounds according to their pitch, we
get them in the order C,, E,, K,, C.. This is clear because

5 17
2< 5> <3 < 4.
Since these sounds are all harmonics of C, the sounds E and K, which
have half as many vibrations as E; and K,, respectively, i.e., °¢/, and 7*/,,
are also harmonics of C. As in section 2, we can make a table as follows:

Sound C E G K C,

5 3 7
c | t|a|2|7 |2

These five sounds togefher approximately constitute the oriental scale.

4. Middle-East Scale: If we proceed with what was done in sec-
tion 3, we get more sounds in the scale. Since the sounds with vibrations
2c, 4c, 8¢, 16¢c, etc. do not contribute to the scale, we choose the
sounds between them. In particular, let us call D; the sound with 9¢
vibrations. We also choose Ps, H;, and B; with vibrations, respectively,
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11c, 13c, and 15¢c. As before, we may choose D., P,, H;, and B. with
vibrations 9¢/,, 11¢/,, 13¢/, and °¢/,, respectively. Then we choose D, P,
H, and B with vibrations °¢/g, 11%/4, 13/, and 5%/, respectively. We shall
construct a table as before.

Sound C D E P G H K B C,
A

11

13 15
3 2

8 4 8

9| 5 3
¢ 113 4 2

A scale may be made out of these sounds with eight names in
the scale instead of seven. Before we discuss this set of sounds, we
make a table using the theoretical (physical) sounds of the scale.

Sound C D E F G A B C,

(¢}
[y
o[

s la| 3| 5|1,
4 3 2 3 8

If we compare P and F, we see that the ratio of the number of
vibrations of P to the number of vibrations of F denoted by

P _11.4_33
F 8 "3 T 32

This shows that P is sharper than F. This is where the middle-east
music is different from the physical scale. The sound H with #¢/; vib-
rations is not used in the middle-east music. Thus, C, D, E, P, G, K, B,
C, approximately constitute the sounds of the middle-east scale. We
see that

K_7.5_21

AT 4°3 20
Therefore, K is also sharper than A.

5 Tones and half-tones: If we study the physical scale, we ob-
serve that

D_9 E_1, _10,B_09C _16

— X, fd

F
C 8 D 9 E 9 A 8 B T 15
This suggests the idea of small and large intervals or tones and half-
tones. We shall write this as follows:

Sound C D E F
1
i
i

1 ] I
] ] ] =
Tone ! 1 ! 1 | 2

The above table indicates which interval is a tone and which is a
half-tone. For example, between E and F is a half-tone. But, we really
should say large and small intervals.

—33—



RECREATIONAL MATHEMATICS MAGAZINE

!

6. Geometric Progression: An ordered set of numbers is called
a geometric progression when the ratio of each one to its predecessor
is always the same. For example, the set

5, 10, 20, 40, 80,

is a geometric progression. The ratio is 2, that is, the ratio of each
number to the one before it is two. Indeed, we can produce as many
members of this set as we desire.

If one member of a set and the ratio are given, we can always
produce as many members as needed. For example, if 15 is a member
of the progression and the ratio is /2, then we can write some of the
members of this progression, such as

1 dve, Lovartva) =dvayy, dever, ..

7. Geometric Means: For two numbers, the geometric mean of
them is the square root of the product of them. This is a sort of aver-
age, similiar to one-half of the sum, which is called the arithmetic
mean. As for the average of a few numbers, we add them and divide
the sum by the average of a few numbers, we add them and divide
numbers, we multiply them and take the root of order equal to the
number of them. For example, the geometric mean of

5 7, 2, 6
is V(BN (2)(6) = *Vv420.

This idea has been used for the modern scale.

8. Modern Scale: Since two sounds are compared in terms of the
ratio of their number of vibrations rather than the difference of the
number of vibrations, in order to make all intervals equal and call
each one a “half tone,” we need to take the geometric mean of twelve
half-tones of the scale. Thus the number of vibrations of the sounds
in the modern scale form a geometric progression which has 1 as a
member and 121/2 as its ratio. Thus the modern scale can be shown
in the following table:

Sound { C D E F G A B C,
c 1 (12\/2)2 .(12\/2)4 (12\/2)5 (12\/2)7 (12\/2)9 (12\/2)11 2

As we observe, the power of 2y/2 increases by 2 whenever we have a
tone: and it increases by one whenever we have a half-tone.

The modern scale is not really as natural to the ear as the old
Greek scale; but with slight training, the ear gets used to it. The impor-
tant fact is that modulation from one key to another becomes extreme-
ly easy.
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There is one disadvantage in the modern scale, namely, the third
harmonic of C, i.e., G, becomes slightly flat. The sound G is called the
dominant of the scale and, being flat, makes the music dull. We shall
show this fact mathematically. In the modern scale

G _ —
a = (1z2y/2)" = 1.498
But, in the natural scale
G — 8 _
T =5 = 1.5.

This mistake is always corrected in the violin. This is one of the reasons
that an orchestra with string instruments sounds much better than
a piano solo.

9. Major Keys: A sample of the scale of a major key is the one
in section 8. This is called “C major” since it starts with C. C is also
called the tonic of the scale. In any major key, the sound (notes) of
the scale have the same relation to one another as the ones in C major.
That is, the interval between the third and fourth elements is one
half-tone; also the interval between the seventh and eighth elements
is a half-tone, and the other intervals are all one tone.

The next major key is G major. This has been chosen for two
reasons. One is that the note G is the third harmonic of C; the other
is that this key has a higher pitch. Note that going from C to its
second harmonic does not change the scale. The table of the scale of
this key is as follows.:

Sound | G A B |c.| b E, oG
c (12\/2)7 (12\/2)9 (12\/2)11 2 (;z\/z)u (12\/2)16 (12\/2)15 (12\/2)19

We observe that in order to have the interval between the seventh
and eighth, i.e., subtonic and tonic, a half tone, we have to use F.§
(F, sharp) with vibrations (*?\/2)2® instead of F, with (**\/2)*".

If we choose the fifth note of this scale as the first of a new scale,
we get the key of D major. This key needs two sharps.

The reader may try this idea and work out tables for several
major keys which come after G major.

As it was possible to get major keys with higher pitch, it is also
possible to get major keys with lower pitch.

Suppose we look at the table in section 8 and consider a scale
for which the fifth note is C. This will have the following table:

Sound F, G A, B [c| D E F
c (12\/2)»7 (12\/2)—5 (12\/2)—3 (12\/2)'—:: 1 (12\/2)2 (xz\/2)d (12\/2)5
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Here we have to use B,), i.e., B flat, in order to have the interval
between the third and fourth notes be a half-tone.

If we proceed in this way, each lower key has an extra flat. We
leave it to the reader to produce many major keys and write tables for
the corresponding scales.

10. Minor Keys: To imitate the crying sound of middle-east music,
minor keys seem to be proper. Most older pieces written in minor keys
avoid the very large interval followed by a half-tone, but we find this
combination of sounds in recent pieces.

* Many forms of minor keys have been considered. We shall de-
scribe only one of the most recent pieces.

To obtain a new scale, instead of going to the third harmonic of
C, we may go to the fifth harmonic of C. But, this key is not the
simplest minor key. Thus we move down to A, whose fifth harmonic
is approximately C. The table of the scale for A minor is the following:

Somd | A, | B, |C| D E F t | a
c (12\/2)": (12\/2)41 1 (12\/2): (l‘.‘\/z)l (12\/2)5 (11\/2>h (lcvz):b

As the physical scale shows, it is desirable to have a half-tone interval
between the subtonic and the tonic of a scale. This brings G¢ into the
scale. As we see, the interval between F and Gi is one and a half tones.

Other minor keys are obtained from this in a manner similar to
that by which the major keys are obtained from C major. We leave
it to the reader to obtain them.

It would be very interesting for one to compare his knowledge
of music with what has been said here,
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It is amusing and often instructive to interpret algebraic identi-
ties from the point of view of geometry. This was the Greek way of
looking at ‘elementary algebra: when Euclid said the square on the
hypotenuse he meant exactly that. The Greek mathematicians were
always concerned with “what the algebra means to the geometry,” al-
though they did not phrase it in just those terms. .

g

a b a a b b b

Figure 1.
(a+b)2=az+2ab+b?

Figure 2.
(2a+ 3b)2=4a?+ 12ab+ 9b*

We begin with an obvious example: Fig. 1 needs no further ex-
planation. An easy extension is (2a+3b)*=4a?+12ab+9b?, as pic-
tured in Fig. 2. Perhaps not quite so familiar is the identity
(X +y-+2z)*=x2+y?+2?+2xy + 2xz + 2yz, (Fig. 8). Only slightly more
complicated is the diagram for (a—b)?=a?—2ab-+b?, (Fig. 4). Here

(
4

}s
y

b'e
a—b b
X y z : ~ )
a
Figure 3. Figure 4.
(x+y+z)* = (a—b)2=a>—2ab + b2
X*4y?*4 224 2xy + 2%z + 2yz
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the subtraction of 2ab removes too much: there is overlap to the ex-
tent of the shaded area, which must therefore be added back on again
once, for we have subtracted it twice.

We look now at a(b+c)=ab+ac, an example of the distributive
law. Note that Fig. 5 does not prove the distributive law; it merely
indicates that rectangular areas as products of their sides are among
those additive objects which behave in accordance with the law.

b c

Figure 5. a(b+c¢)=ab-+ac

When we come to a*—b?=(a+b)(a—b), we have to rearrange
the areas (Fig. 6). Let us do next a solid, (Fig. 7). There are many
more. Can you think of any easy ones?

a—b b

———m
b

>a—-b

~""

a+b

a
az—b? = (a-+b) (a—Db)
Figure 6. .
We could also turn things around and ask algebra to do geometry

for us. This is the modern mathematician’s way. By means of the
identity (a+-b)2=a?+ 2ab-+b? we can prove the pythagorean theorem:

a?+2ab+b*=(a+b)?

which, referring to Fig. 8, =c*+4 triangles
—=c?+4 (Yab)
—=c¢?+ 2ab.
Subtracting 2ab from both sides, a®+b?=c2.
—38—
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Ny AL

L/
N ~ /\.‘w
a b
Figure 7. (a+b)3:a3+3a2b+3ab‘2—}-b3

Large cube.equals inner cube plus 3 slabs plus 3 columns
plus small cube.

We could have done this one purely mechanically, in what we
might call the engineer’s way. Let the large square of Fig. 8 be a
wooden frame and let the four triangles be wooden templates
(draughtsman’s 30-60 triangles would do nicely). Then we have only
to move the triangles to the new positions of Fig. 9 to show that the
open space previously allotted to c? has been redistributed into a*+b*.




A Crass Number Puggte

Bill went for a ride in his old jalopy yesterday, and here he tells
us something about it and himself.

For some reason best known to Bill, he uses the term “Funny
Figure” for any number which becomes nine less when its digits are

reversed.
[ ] '3 '
5 l 3

ﬂy g 04 c7'7{ c?"/unfz't

7

1 14 3

%4 5

1. His average miles-per-gallon gas consumption.

3. His father’s age, when Bill was eleven.

5. The year of his car.

7. Five times the number of gallons of gas he used.
9. Two-fifths of his father’s age.

12. The square of his father’s age.

14. Distance he drove in 3 hours at his average speed.
15. Number of gallons of gas he used.

1. The distance he drove in miles.

2. Twice his younger brother’s age.

4. Reverse of “10 down”.

5. His younger brother’s age.

6. His average speed in miles-per-hour.

8. Distance he drove in 2 hours at that speed.

9. The square of his total gas consumption in gallons.
10. A “Funny Figure”.
11. “1 Across” plus “9 Across”.
13. Bill’s age.

Pagzles ¥nd Prolblems

The puzzles and problems with an asterik, *, will be answered in
the next (August) issue of RMM. The answers to the others will be
found on pages 48-49.

Answers and comments may be sent to the editor.

1. Ages and Ages

Back in 1932, while talking with my grandfather, I happened
to mentioned that I was old as the last two digits of the year of my
birth. Grandfather promptly replied “Well, by gosh, Harry, that works
out for me, too!” How old were we back in 1932? (H. V. Gosling)

2. *High Stakes

Mike sat down and started shuffling the cards. “What stakes?”
he asked.

“Let’s make it a gamble,” Steve replied, putting a few bills and
some coins on the table. “The first game the loser pays one cent, the
second two cents, and so on. Double up each time.”

“Okay,” laughed Mike, checking his cash. “I’ve got only $6.01,
and I’'m not playing more than ten games anyway.”

So they played, and game followed game until at last Mike stood
up, “That’s my last cent I've just paid you,” he declared, “but I'll have
my revenge next week”

How many games had they played, and which did Mike win?

(J. A. H. Hunter)

3. Planetary Daze

As astronauts are aware, the year is in not a constant among the
planets of this solar system. The number of days in a year on Mercury,
Venus and Earth altogether total 10 less than a Martian year. It takes
14 days more than 3 Venusian years to make a year on Mars. The num-
ber of days in a year on all four planets is 1862. How many days has
a year on Mercury, Venus and Mars? (B. Newhoff)

4. *Breakfast Mathematics

As a mathematician Mr. Smith noted everything in numbers. He
knew, for example, that his coffee cup held exactly six swallows of
coffee.

One morning he was hurrying to leave for work on time and didn’t
notice that his wife had filled his cup with coffee without putting in
any cream. One swallow was enough to tell him and he promptly filled
the cup with cream. But two more swallows made him decide the cof-
fee was a bit strong and he filled it again with cream and drank half
before he decided to fill the cup again with cream. He finally drank
the whole cup and left for work.

While driving to work he wondered “Did I have more coffee or
more cream for breakfast?” (G. Mosler)
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Really Cutting Up, Now! (See inside back cover for solution).
5. *Squares at the Round Table

Mr. Smith, our accountant friend, had come home from work
and found that his son left his little wooden blocks on the round table
in the hall. Now the blocks were one inch on each side and Mr. Smith
noted that the blocks were arranged in a square on the table. Just
as he was about to count them, his little son came rushing in and
grabbed about a third of the blocks for some rather important business
elsewhere.. Undaunted, Smith rearranged the remaining blocks and
found that he could make a rectangle 13 inches wide and have 7 blocks
left over, or form a rectangle 15 inches wide and have 8 blocks left
over. Noting that the round table holding the blocks was 17% inches
in diameter, Mr. Smith was able to figure out how many blocks his
son took and how many were on the table when he first walked in.
Can you? (W. R. Ransom)

6. *No Problem For An Accountant

Mr. Smith made a poor showing at his new job. On the first day,
because of heavy traffic, he was only able to go 20 miles per hour and
he arrived one minute late to work.

The next day his alarm clock failed him and he just managed
to leave for work the same time as the day before. However, traffic
wasn’t quite so bad and by going 30 miles per hour he arrived one
minute early to work.

Since Mr. Smith’s new job was as an accountant he had no
trouble figuring out how far from home his office was, how long it
took him to drive each day, and how fast he should drive to arrive on
time if he left the same time every day as on the first two days.

(Edward L. Vaupel).

7. *The Doctor’s Dilemma

Doctor Caput Nimbus, who generally has trouble recalling TV
channels, grocery lists and a multitude of other things, was delighted
with his new license plates.

“Not only are all the figures the same,” he explained, “but they
represent my birth year multiplied by the total of all my children
and grandchildren.”

Questioned about his family, he remarked that he had more sons
than daughters. “My sons only have sons, each having one fewer sons
than I have.” he declared, “and my daughters only have daughters,
each having one daughter fewer than I have.”

His new license number would not have more than six figures

3ny}\;v)ay, but I'm still wondering what it was. Do you know? (D. Mur-
oc
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8. Some Extracurricular Activity

Our High School has five extra-curricular groups. They are the
Choral, Chess, Photography, Literary and Political Clubs. The Choral
group meets every other day, the Chess every third day, the Photo-
graphy every fourth day, the Library every fifth day and the Political
every sixth day.

The five groups first met on January 1st this year and thereafter
meetings were held according to schedule.

How many times did all the Clubs meet on the same day in the
first quarter, excluding January 1st?

How many days were there when none of the Clubs met in the
first quarter? (H. V. Gosling)

9. An Airport Problem

A young man, about to take off in his plane, spotted a pretty girl
on the concourse with lots of baggage but no prospect of a ride.

“Hi, did you miss your plane?”’ he asked. .

“Yes, and now I’ll have to wait until tomorrow for the next one.”

“I’d be glad to give you a lift if you don’t mind.”

“But,” she replied, “you don’t know where I’'m going.”

“It doesn’t matter. I can take you where you’re going without
going out of my way. I’ll drop you off where you want and continue
on my way.”

Naturally the girl thought this was a fresh young man with a new
line and refused his offer until he told her where he was headed. She
realized he had been telling her the truth and went with him.

The questions remain, however. Where was the young man going
and how far away was his destination? (Jack Halliburton)

10. The Case of The Alligator Handbags by Mel Stover

Private Eye Detective Agency,
Los Angeles, California
January 15, 1961

Operative 55,
New York City.

Dear Op.

I am investigating a kidnapping case and would like you to dig
up some information for me.

The Bronx Leather Company gave a Christmas party for its 296
employees. They presented all who attended with gifts —— 50 dollars to
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the men and 40 dollars to the women. The women received an addi-
tional gift of a genuine alligator handbag containing a twenty-five
cent piece for luck.

Could you find out how many handbags were given away?

Sincerely,

Private

New York City
January 18, 1961
Dear Private:

As I am leaving town for a few days I was only able to give an
hour to your case. In that time I made the acquaintance of a book-
keeper employed by the firm. I found out from him that all of the
female employees attended the party but some of the men (he told
me the percentage) were absent. I could not get any other information
out of him but from that I was able to calculate the total amount of
money the firm dispersed. But T haven’t a clue as to the number of
handbags. Sorry to be of so little help.

55
OP.
FROM YOUR LETTER WAS ABLE TO DEDUCE THE NUM-

BER OF HANDBAGS. LETTER FOLLOWING. THANKS FOR
YOUR HELP.

EYE
(Private Eye’s Letter is on Page 48)

11. The 12 Coins Problem by J. A. H. Hunter

The old problem of the counterfeit coin crops up from time to
time to puzzle and infuriate new generations of solvers. It can be
stated in simple terms as follows:

You have eleven perfectly identical coins, and also one counterfeit.
The counterfeit coin is a perfect copy except that it is appreciably
lighter or heavier than the genuine article, but you do not know whether
it is lighter or heavier.

You also have a balance scale, without weights, and you are al-
lowed to mark any of the coins as desirable.

In only three weighings, of coins against coins, you must identify
the counterfeit coin and also ascertain whether it be light or heavy.

The popular solution is highly complex. There is, however a sim-
ple solution which may be of interest even to those who have dallied
previously with this problem.

To avoid spoiling their fun for some, this solution is detailed on
page 49. If the problem is new to you, just try it before peeking!

—d4

Answerns to Puagples tn the rpnil Tosue

The answers to the Word Games, Alphametics and Readers’ Re-
search Department will be found in their respective sections in this
issue. All other answers to the April issue follow.

GEOMETRIC DISSECTIONS (Page 6 in the April issue)
A 4-H Problem: The cuts are shown on the left, below, passing
through the two points.

H?: The H can be formed into a square (on the right) by two
cuts along the solid lines in the middle drawing. However, by folding
along the dotted line, only one cut is required to form the minimum
five pieces.

=] SRR 9
LA

4 5

A Problem in Multiple Division:
(1) Three of the many ways of forming two identical pieces are
shown in Figures A, B, and C below.

(2) There are no solutions to the three identical pieces problem.
Three pieces of the same shape can be cut, but the dots would not
be in the same positions.

) (3) Impossible - 18 dots cannot be distributed equally among 4
pieces.

(4) Figure D shows one solution.
(5) No solution - the dots in each piece would have to be on ad-

jacent squares and two of the dots of the original diagram are in
opposite corners of the figure diagonally related to the nearest dots.

(6) Impossible - 18 dots cannot be distributed equally among
12 pieces.

(7) One solution is shown in Figure E.
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MAJOR PUZZLES (Pages 31-33 in the April issue)

1. Lecture Attendance: There were 3 female doctors, 27 male
doctors, 3 Nurses and 2 Paratroopers.

\&\@\\N «; a solution to the puzzle.

&
'

2. Self Protection: The diagram shows

3. The Farmer’s Financial Finagling:
The oldest son sells 7 eggs for 9 cents and
3 eggs for 27 cents each; the next youngest

\\\.&\\\\\\&\\\\.&& sells 28 eggs at 9 cents per 7 and 2 eggs at

\\Q skl —1 eggs at 9 cents per 7 and 1 egg at 27 cents.

4. Moonshine Sharing: The solution to this puzzle hinges on being

able to half fill (or half empty) the 10 quart container (cylindrical)
by tipping until the overflow at the top is level with a point at the bot-
tom of the can where the side and bottom meet. The solution is:

Fill the 13 quart container, pour into the 10 quart con-
tainer, leaving 3 quarts. Half empty the 10 quart container
and pour the 5 quarts remaining into the 11 quart container
and add the 3 quarts from the 13 quart container. There are
now 8 quarts in the first moonshiner’s 11 quart container. Re-
peat the above steps except pour the 3 quarts from the 13
quart container into the 10 quart container containing 5
quarts. There are now 8 quarts in the second moonshiner’s
10 quart container. The barrel holds the remaining 8 quarts
which can be poured into third moonshiner’s 13 quart con-
tainer.

5. The Jewel Box: The distance to the fourth corner is 7 inches
(see the Letters to the Editor section on page 58). Solved cor-
rectly by Murray R. Falk of Calgary, Alberta)

6. Hit the Jackpot: A process of elimination by checking pot
handles and visible numbers forces one to the conclusion that pot 9
held the Jackpot. (Solved correctly by Murray R. Falk)

7. The Divorcee’s Dilemma: Only one cut is necessary. Cutting
the fourth link from the left will divide the belt into two chains of

6 and 3 links each and 2 single links.
She may now give one link the first
day, another single link the second
day, a 3-link chain in exchange for
the 2 single links on the third day.
This process continues on for eleven
days.
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27 cents each; and the youngest sells 49

3-D IN 2-D (Pages 51-53 in the April issue)
The Side View and Iso-

metric View of Figure 5 is
shown to the right.

Figure 6 corresponds to a
cube from which a diagonal
mass of material was removed.

Figure 7 is the internal
segment of the intersection at
right angles of two cylinders.
Figure 8 is almost the same,
being the intersection, at right
angles, of two cylinders. How-
ever, the flange ends have

been retained in addition to .
the internal segment. Figure 5

Figure 9 is the internal segment of the perpendicular intersection
of three cylinders.

And, finally, figure 10 is the familiar Pullman car Dixie cup. The
circle, square and triangle cross-sections are indicated.

O ¢

Figure 7 Figure 8

Figure 6

Figure 9

Figure 10
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ANSWERS TO CERTAIN PUZZLES AND PROBLEMS ON PAGES
41-44.

1. Ages and Ages: I was 16, born in 1916; Grandfather was 66, born
in 1866.

3. Planetary Daze:

Mars - 686 days; Venus - 224 days; Mercury - 87 days; Earth -
365 days.

10. The Case of the Alligator Handbags:

Private Eye Detective Agency
Los Angeles, California
January 20, 1961

Operative 55
New York City.

Dear Operative:

From the facts given in your letter I was able to deduce that ex-
actly 96 handbags were given away by the firm.

My client who lives near the firm, asked me to investigate the
disappearance of his eight pet alligators which he had not seen since
he quit drinking last November. As one alligator will make up into
twelve handbags you can readily see the importance of the exact
number.

Now for your letter — since you were able to calculate the total
amount of money given away without knowing the number of male or
female employees you must have noticed a very lucky coincidence. The
only way that you could possibly find the amount of money was that
the percentage of absent male employees exactly matched the percen-
tage difference between the monetary gift received by each man and
the monetary gift received by each woman. A man received 50 dollars,
a woman $40.25 or 19.5 percent less. The bookkeeper must have told
you that 19.5 percent of the men were absent. This fact would allow
you to calculate that the “average’” male employee received $40.25,
the? by multiplying that figure by 296 you could find the firm’s cash
outlay.

But if 19.5 percent of the men were absent and you disallow such
things as fractional men, the smallest number of men possible is 200.
as the next possible number is 400 there must have been 200 men and
96 women employed by the firm.

And I think you knew it all the time.

Sincerely
Private Eye

oy m—am

——

o R
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11. The 12 Coins Problem

Number the coins from 1 to 12.

Weigh four against four, in three successive weighings, the groups
being selected as follows.

Lefhand pan Righthand pan

1st weighing 1, 2, 3, 4 against 5,6, 7, 8
2nd weighing 3,4,8, 9 against 1, 5, 10, 11
3rd weighing 2, 6,8, 10 against 3, 5, 11, 12

3. From the three results it will be a simple matter to identify the
counterfeit coin, and to see whether it is light or heavy.

4. For quick reference, all cases are covered by the following tabula-

tion, the results of the three successive weighings being indicated
by the code:

Even Balance -0
LEFT pan light -1
LEFT pan heavy - 2
Weighing Coin Coin Weighing Coin Coin
Results Light Heavy Results Light Heavy
001 12 112 3
002 12 120 1
010 9 121 Impossible
011 11 122 8
012 10 200 7
020 9 201 6
021 10 202 2
022 11 210 1
100 7 211 8
101 2 212 Impossible
102 6 220 4
110 4 221 3
111 5 222 5

Interested obtaining the first (February 1961) ‘RMM? See
Editorial on page 2.
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PRIME GENERATING POLYNOMIALS
gy éidnsy Keavitz
No polynomial can represent primes exclusively. However:

(1) At an unknown date Euler found that x>+x+4 17 generates
16 different primes for x =0, 1, 2, . .. 15.

(2) In 1798 Legendre noted that 2x2+4 29 generates 29 different
primes for x =0, 1, 2, . .. 28.

-(8) In 1772 Euler discovered that x>*—x+41 generates 40 dif-
ferent primes for x =1, 2, 3, . . . 40.

) (4) By substituting (y—39) for x in x*—x+41, Escott found,
in 1899, that y*—79y-+1601 generates 40 different primes for
y = 0, 1; 2, LI ) 79.

(5) By substituting (—3w-+82) for x in x*—x+41 I find that
9w>—489w 1 6683 generates 40 different primes forw =1, 2, 3, . . . 40.

The following are additional facts about the prime generating poly-
nomial x2—x+41,

(1) Between x=1 and x—2398 inclusive, precisely one half of
the numbers generated are prime.

(2) This polynomial is never divisible by a prime less than 41.

(3) The lowest positive x generating a number with two factors
is x—=41; three factors first occur at x=421; four factors first occur
at x=1722. Five factors first occur somewhere between x—10,764 and
x—84,420. Six factors first occur at x—139,564.

% % * *®

The dates listed here were obtained from Dickson’s HISTORY
OF THE THEORY OF NUMBERS (Chelsea Publishing Co.).

It can easily be verified that when 3° is divided by 10 there is a re-
mainder of 10; when 3% is divided by 15 there is a remainder of 12; and
when 3% is divided by 19 there is a remainder of 3. Would anyone
care to disprove the fact that if 3i8sssrre0s60206017 g divided by
18584774046020617 there is a remainder of 3?

(Alan L. Brown)

The answer to (A) (FLUSH) = TRUMPS is (6) (45183)=
271098. (See Letters to the Editor page 57).
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Beaders’ Beseanch Depantment

It appears that the first Research Problem in the April issue
proved a bit tough. There were no adequate analyses of either the cir-
cle problem (what is the maximum number of regions into Wh_lch a
plane can be divided by M circles) or the sphere problem (what is the
maximum number of regions into which space can be divided by S
spheres).

Richard Body (age 14) of Calgary, Alberta; Maxey Brooke of
Sweeny, Texas; James V. Ralston, of Exeter, New Hampshire; J. A. H.
Hunter, of Toronto, Ontario; and the editor all agree that the formula
for M circles is N,=M?—M+2 where N, is the maximum number of
regions on the plane.

There was no agreement on the formula for S spheres.

The second problem, the determination of the best strategy for
playing the game of Dots and Squares (or Square it, or the French
Polytechnic School’s Game), also yielded no analyses.

It was noted by one reader that if we adopt the first rule (the
players play one stroke alternately throughout the game) the second
player can easily win on the board with an odd number of squares
by simply playing symmetrically opposite the stroke made by the first
player. He will then win with one square more than the first player.

‘However, the second rule, usually adhered to, (players play alter-
nately unless a square is completed which gives an extra stroke to the
player - the extra stroke continuing as long as the player completes
squares) yielded no analyses.

Since there are two problems held over, we shall present only one
problem for research in this issue.

The problem was suggested by Leo Moser of the University of
Alberta. What is the least number of colors with which one can color a
plane in such a way that no pair of points unit distance apart are
colored the same?

We note from the drawing below that seven colors certainly suf-
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fice. The plane is filled with regular hexagons such that the radius
of the circumscribing circle is slightly less than one, say 0.99, and the
hexagons are colored with seven colors (indicated by numbers). The
pattern used fulfills the general condition of the problem - but is
seven the least number of colors required?

Naturally, we don’t suggest that hexagons are the correct pat-
tern. The solution may involve regular or irregular figures. The prob-
lem might be worked from the other end, viz., show that at least four,
or five, or possibly six colors are required.’

The next issue of RMM will have a geometry research problem
and a number-array problem.

74“&‘ pw 53 William <R HKansom

Is it fair play to ask one to solve for four unknowns when only
two equations are given?

A farmer sold 22 birds, an odd number of each. He got $3.60
each for the geese, $1.10 for the ducks, $1.15 for the hens, and $0.40
for the pigeons: that made a total of $22.35. .

Represent the number of each by g, d, h, and p, respectively. Then
we have the equation:

360 g + 110d + 115h +40 p = 2235
which, divided by 5, gives the equation
72g + 22d + 23h + 8 p = 447
g+d+h+p= 22
Multiplying the second equation by 22 allows us to eliminate d,
and multiplying it by 23 allows us to eliminate h. Then
d=49g —15p + 59
h=14p —50g — 37
Now g is at least 1, in which case
d =49 —15p + 59 =108 — 15p
h=14p—50—37T=14p — 87
Since d and h are positive
108 — 15 p>0, p<18;; = 7Y,
14 p — 87>0, p>*),, = 61y,
soif g=1,p = 7, and that makes d = 3 and h — 11.
This is the only possible solution, for since g is odd, if it is not 1
it must be greater than 2. But if g>2,
d>98—15p+59
h<14p—100—37
157—15p=0, so p<107:5
14p—137=0, so p>11v,,
But p cannot be less than the smaller and more than the greater.

This problem is adapted from page 141 of Vol. I of Schubert’s
Mussenstunde.

Also

and so
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Ve Vext 96 Pnime Vewmbens -~ 10007 ta 177357

A total of four errors found their way into the prime table in
the April issue. 7917, 9027 and 9399 should read 7919, 9029 and 9397,
respectively; 9049 was missing and should be included. .

The primes listed below have been doubly proofread against two
independently derived tables of primes, both of which agreed perfectly
between themselves. One list was derived from D. N. Lehmer’s Factor
Table (Carnegie Institution of Washington, 1909) by Alan L. Brown
of East Orange, New Jersey. The other list was computer calculated
by Vernon J. Shipley of Kitchener, Ontario.

10007

0009 10429 10861 11299 11779 12161 12569 12979 13417 13841 14327
1005?/ 104% 10867 11311 11783 12163 12577 12983 13421 13859 14341
10039 10453 10883 11317 11789 12197 12583 13001 13441 13873 14347
10061 10457 10889 11321 11801 12203 12589 13003 13451 13877 14369
10067 10459 10891 11329 11807 12211 12601 13007 13457 13879 14387

10069 10463 10903 11351 11813 12227 12611 13009 13463 13883 14389
100759’ 1047; 10909 11523 11821 12239 12613 13033 13469 13901 14401
10091 10487 10937 11369 11827 12241 12619 13037 13477 13903 14407
10093 10499 10939 11383 11831 12251 12637 13043 13487 13907 14411
10099 10501 10949 11393 11833 12253 12641 13049 13499 13913 14419

10103 10513 10957 11399 11839 1226% 12647 13063 13513 12921 14423
1011? 1022; 109?/5 11411 11863 12269 12653 13093 13523 13931 14431
10133 10531 10979 11423 11867 12277 12659 13099 13537 13933 14437
10139 10559 10987 11437 11887 12281 13103 18553 13963 14447
10141 10567 10993 11443 11897 12289 12689 13109 13567 13967 14449

10151 10589 11003 11447 11905 12301 12697 13121 13577 13997 14461
10159 10597 11027 11467 11909 12323 12703 13127 13501 13999 14479
10163 10601 11047 11471 11923 12329 12713 13147 13597 14009 14489
10169 10607 11057 11483 11927 12343 12721 13151 13613 14011 14503
10177 10613 11059 11489 11933 12347 12739 13159 14029 14519

10181 10627 11069 11491 11939 12373 12743 13163 13627 140335 14533
10193 10631 11071 11497 11941 12377 12757 13171 13633 14051 14537
10211 10639 11085 11503 11953 12379 12763 13177 13649 14057 14543
10223 10651 11087 11519 11959 12391 12781 13183 13669 14071 14549
10243 10657 11093 11527 11969 12401 12791 13187 13679 14081

10247 10663 11113 11s49 11971 12409 12799 13217 13681 14083 14557
10253 10662 11117 11221 11981 12413 12809 13219 13687 14087 14561
10250 10687 11119 11579 11987 12421 13229 13691 14107 14563
10267 10691 11131 11587 12007 12433 12823 13241 13693 14143 14501
10271 10709 11149 11593 12011 12437 13249 13697 14149

10273 10711 11159 11597 12037 12451 12841 13259 13709 14153 14621
10289 10723 11161 11517 12041 12457 12853 13267 13711 14159
10%01 10729 11171 11621 12043 12473 12889 13291 14173
10%03 10733 11173 11633 12049 12479 12893 13297 13723 14177
10313 10739 11177 11657 12071 12487 12899 13309 13729 14197 14639

10321 10753 11197 11677 12073 12491 12007 13313 13751 14207
10331 10771 11213 11681 12097 12497 12911 13327 13757 14221
10333 10781 11239 11689 12101 12503 12917 13331 15759 14243 14669
10337 10789 11243 11699 12107 12511 12919 13337 13763 14249
10343 10799 11251 11701 12109 12517 12023 13339 13781 14251

10357 10831 11257 11717 12113 12527 12941 13357 135789 14281
10369 10837 11261 11719 12119 12539 12953 13381 13799 14203 14717
10391 10847 11273 11731 12143 12541 12950 13397 13807 14303
10399 10853 11279 11743 12149 12547 12067 13399 13829 14321
10427 10859 11287 11777 12157 12553 12973 13411 13831 1432%
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Hewnbens, Punbers, Hembers

The editor would like to add a few notes received from various
readers pertaining to the Perfect numbers given in the April issue.

It has been observed that all Perfect numbers, greater than 6,
have digital roots of 1, i.e., the ultimate sum of their digits equals 1.

V,=28 2+8=10 14+0=1

V;=496 44+9+6=19 149=10 1+0=1
V,=8,128 8+1+4+2+4+8=19 149=10 1+0=1
V;=33,550,336 3-+3+5+etc.—=28 2+8=10 149=1

and so on for all 18 Perfect numbers.

Every Perfect number greater than 6 is the sum of consecutive
odd cubes, beginning with 1.
V,—=28=1343°
V:=496—=1*+3+55+7°
V.=8,128=13+33+ 53+ 75+ 9% + 112+ 13% - 15
Vs=383,550,336=13+3*+5+ . ... .. +1273
and similarly for the remaining Perfect numbers.

Malcolm H. Tallman, of Brooklyn, N.Y., points out that all the
Perfect numbers are the sums of successive powers of 2 from 2°* to
22-2 where Perfect numbers are of the form 2°*(2*—1) as pointed
out in the April issue.

V,=21(22—1)=6=2" 422

V.=22(28—1)=28=2242342*

V;=24(2°—1) =496=2++ 254 2°64-27 - 28

V,=25(27—=1)=8,128=2° + 27 + 28  2° 4- 210 4 231 |- 212

V;=212(2:2—1)-=33,550,336=2*24- 213+ 21 , ., , , +2%
and so on.

Alan L. Brown, of East Orange, New Jersey, observes that the
Perfect numbers look much more interesting when written in Base 2
(for number systems, see the series of articles in this issue beginning
on page 1).

V=2r1(2r—1) Base 10 Base 2
V,==21(22—1) 6 110
V.=22(2:—1) 28 11100
V:=24(25—1) 496 111110000
Ve=25(2"—1) 8,128 1111111000000

V,=212(213—1) 33,550,336 1111111111111000000000000
and so on. The number of ones is equal to p and the number of zeros
following is equal to p—1.

In the next issue of RMM (August 1961) the editor will do his
best to have the full values of the 18 Perfect numbers.

Francis L. Miksa, of Aurora, Illinois, who has compiled some fan-
tastically large tables of Pythagorean triangles, Binomial Coefficients,
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3 and miscellaneous other tables, culled from his tables of integer solu-
; tions to
'y X +y*+2* +wi=t?
A some interesting reversed-digit solutions, some of which include:
X y Z W t X y z W t
03 12 22 42 49 12 12 58 72 94
5 30 21 22 24 49 21 21 85 27 94
' 01 28 40 72 87 11 31 17 15 98
10 82 04 27 87 11 13 71 51 98
02 27 44 70 87 13 37 55 71 98
- 20 72 44 07 87 31 73 55 17 98
05 12 26 82 87 15 33 57 71 98
50 21 62 28 87 51 33 75 17 98
1 H. V. Gosling, of Kingston, Ontario, completes the remainder of
‘ the Numbers, Numbers, Numbers department with some interesting

miscellaneous observations.

1. Here are two series of whole numbers written in geometric pro-
gression whose sums are perfect squares:

1+3+9+27+81=121=11%
1+ 74494 343—=400=202 .
Are there others?
2. Having Fun With Digits

a. Reverse Equations

001=(0°)* 36=(6) (3!)
2.5=5:2 64—=+/4¢

2=y @) Ti=vyIi+T
25=>52 125=>52+

b. Same-Order Equations
456=1(4) (5!—6)

387,420,489 = 387+420-480
46656=[— (4) () + (6) (5)]° 384=(3!) (V8
16384 = (/16) 4 360=(3!) (60)-
3125= (3! +1—2)* 360=[3][(6—0!)!]
660=6!—60 355=(3) (5!) —5
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123456787654321 =

12345678987654321 —

c. Some Neat Equivalents

1=
121 = (1242~)2(f~21)
12321 = 4 +(:233f; fg?:r) i
1234321 = 37 2(4:1‘;,44% 21(;14344% )2 +1
123454321 = 3 +(35 i5f i); 1545-?53) +2+1
12345654321 = iniTLf?fi? 57971
1934567654321 — CTTTTTTTY CTTTTTTT)

1+2+3+44+54+64+7+6+5+4+3+2+1

(88888888) (88888888)
1+2+3+4-+54+6+7+8+7+6+5+4+3+2+1

(999999999) (999999999)

1+2+3+4+5+6+7+8+9+8+7+6+b5+4+3+2+1

3. Miscellanea
a. (°/8)2+3/5=(3/5)2 45/
b. The editor, in the February RMM, showed 113 ways of writ-
ing 100 using the nine digits 1, 2, 3, 4,5,6, 7, 8, 9 in order. H. E.
Dudeney (Amusements in Mathematics, Dover Publications, page 158)

shows how to arrange the nine digits, not necessarily in order, as frac-
tions to equal 100.

962148/537 961752/488 961428/357 941518/263 917524/836
915823/647 915742/638 823546/197 817524/396 815643/297 369258/714
4. Problems

a. Find an integer solution for a‘+b*+c*+ dé=—e*
b. Likewise for  a®+b®+4 co=d¢+ ef + £

;
'
;

Lettens to the Editor

Dear Sir:
I would like to correct your statement (Aprili RMM, page 45)
that the IBM 709 found the Mersenne prime M;,;..

Hans Riesel announced this discovery on September 8, 1957 using
the Swedish electronic digital computer BESK for 5% hours. D.
Scheffler and I calculated the 18th Perfect number using M,,,, found
by Riesel. The work was done here at NAFEC on November 17, 1959.

N Rudolph Ondrejka
NAFEC
Atlantic City, N. J.

Dear Mr. Madachy:

In Mathematical Tables and Other Aids to Computation, Vol.
XTI, No. 61, page 60 (January 1859) “A New Mersenne Prime” was
announced by Hans Riesel. The numerical evaluation of the 18th
Perfect Number appears in Mathematics of Computation, Vol. 14,
No. 70, pages 199-200 (April 1960) (D. Scheffler and R. Ondrepka -
“The Numerical Evaluation of the 18th Perfect Number”).

Sidney Kravitz
Dover, N. J. :
The editor humbly admits his error and thanks both of the corres-
pondents for the information and copies of the 18th Perfect Number.

Dear Mr. Madachy:

There appears to be some doubt as to the card Mrs. Nelson drew
to fill her flush in (A) (SPADE)=FLUSH Alphametic (April RMM,
page 15). Maybe it was a 2 (with SPADE 38215, 39215, 35218,
35219 and FLUSH 76430, 78430, 70436, 70438), or a 4 (with SPADE
17453 and FLUSH 69812).

As a matter of interest, a rather more intricate alphametic re-
sults with this variation: (A) (FLUSH)=TRUMPS. I cannot, how-
ever, hazard any guess as to what game is being played!

Derick Murdoch
Willowdale, Ontario

As a straight Alphametic there may be several solutions for
(A) (SPADE) = FLUSH but the reader is referred to page 27 for
another answer.

As for the game which makes (A) (FLUSH)=TRUMPS the rea-
der is referred to Mr. Bunge’s articles on page 24. A game could be
devised! (Oh, yes, the answer to Mr. Murdoch’s little Alphametic will
be found elsewhere in this issue).

—57—
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Dear Sir:

In finding the answer to the Jewel Box Problem (April RMM,
page 32) I 1_10ted that there is a neat mathematical relationship bet-
ween any point and the four corners of a rectangle, including a square.
The sum of the squares of the distances of a point to two opposite cor-
ners of a rectangle is equal to the sum of the squares of the distances
of that point to the other two corners. This works even if the point is
;nsuile or outside the rectangle, or even on a corner or side of the rec-

angle.

A B
a b l.e. a*+ ci=b*+d2
P
d c
U. Clid
D C Cleveland, Ohio

__The editor notes that relationship holds even if the point is not
in the same plane as the rectangle. The readers are left to their own
devices or must assume the correctness of the proposition.

Dear Mr. Madachy:

_ While studying the problem of the two factors of 10° and 10
which contain no zeroes (February RMM, page 44 and the answers in
the April RMM, page 29) I find that the next larger power of 10
having two factors without zeroes is 10%3:

1088 = (2%%) (5%8) — (8,589,934,592) (116,415,321,826,934,814,453,125)
T, H. Engel
Forest Hills, L. 1.

Dear Mr. Madachy:
~To add to the many, many proofs of Lehmus’ Theorem (If the
internal bisectors of the base angles of a triangle are equal, then the
C triangle is isosceles), here is

a non-geometrical proof.

Triangle ABC has sides a, b, ¢ and inter-

nal bisectors p and q. Say, 2s—a+b+c. Then,

p = vac[(a+c)2—b?] 2v/acs(s—Db)
atc o a+tc

a q= vbe[(b+c)2—a?]  2v/bes(s—a)
b+c - b+ec

But, by definition, p—q, hence:

a(a+c—b) _ b(b+c—a)
(a+c)z (b+)2

RECREATIONAL MATHEMATICS MAGAZINE

whence, (a—b)[c*+ (a+b)c*+3abc+ab(a+b)]=0. The polynomial
in ¢ cannot be zero, hence a—b=0, so a=b which proves the theorem.

J. A. H. Hunter
Toronto, Ontario

Possibly some readers can come up with other proofs of Lehmus’
theorem and also submit lists of references to proofs worked out by
others. The April RMM Letters to the Editor department listed four
references, but there are many more. References giving the author,
publication, date, page, and title are most desirable. If an abstract of
the highlights of the proof are given this would be nearly perfect. Any-
one who has a collection can rest assured that the editor will return
them after copies have been made. If this proves an interesting project
to RMM readers, the bibliography will be published in a future issue
of RMM.

This particular theorem has intrigued many mathematicians be-
cause of its apparent simplicity - but insidious difficulty. Archibald
Henderson wrote a 40-page paper on the theorem for the Journal of
the Elisha Mitchell Scientific Society in December 1937. H. S. M. Coxe-
ter, in his new book Introduction to Geometry (John Wiley & Sons),
discusses the theorem in considerably less space.

Dear Mr. Madachy:

It is mentioned that Sherlock Holmes wrote a treatise on the
Binomial Theorem. Does anyone know in which adventure Holmes
states this?

For those interested there are other fictional detectives with
mathematical leanings:

August Dupin in The Purloined Letter (Poe) discusses pro-
bability. :

Philo Vance in The Bishop Murder Case (van Dine) discusses
non-Euclidean geometry.

Nero Wolfe used his knowledge of ancient Arabic numbers
to solve a case - but I forgot which case.

There must be many more.
Mazxey Brooke
912 Old Ocean Ave.
Sweeny, Texas

Dear Mr. Madachy:
One can have as many composite numbers as is desired:
Al4+2 Al+3, Al+4, ..., Al+A
which would be A—1 consecutive composite numbers. But you can’t
have two numbers B and 2B without a prime between'them.
I can’t prove this. Can some RMM readers come up with the

answer?
W. R. Ransom
Reading, Massachusetts

it



Bibliograpliy
" Some readers may wish to delve further into some of the ideas

presented in some of the articles and departments in this issue of
RMM. We give a brief list of suggested references below.

Base-n Series

JOHNSON, D. A., & W. H. GLENN Understanding Numeration
Systems, Webster Publishing Co., St. Louis, 1960. One of a
series of booklets called “Exploring Mathematics on Your
Own.” This particular booklet does a wonderful job of in-
troducing the other number systems.

ROSSMASSLER, RICHARD Number Systems Other Than Ours
The Mathematics Student Journal, Vol. 7, No. 4, pages 1-4
(May 1960). A high school student admirably discusses the
binary and duodecimal system.

DUODECIMAL SOCIETY OF AMERICA, INC. Manual of the
Dozen System, Duodecimal Society of America, Inc., 20 Carl-
ton Place, Staten Island, N.Y., 1960. An authoritative man-
dal of the methods and meaning of the duodecimal system.

Mathematics of Music

AMIR-MOEZ, ALI Numbers and the Music of the East and West
Scripta Mathematica Vol. 22, pages 268-270 (1956)

JEANS, SIR JAMES The Mathematics of Music in James R.
Newman’s World of Mathematics published by Simon &
Schuster, 1956, pages 2278-2309. This is an excerpt from Sir
James Jeans’ book Science and Man.

KLINE, MORRIS Mathematics in Western Culture, Oxford Uni-
versity Press, 1953, pages 287-303.

Geometric Algebra

HOGBEN, LANCELOT Mathematics for the Million, W. W. Nor-
ton & Co., Inc., N. Y., 1951 (Third Edition). Some of the
problems discussed by Mr. Ogilvy are given as exercises along
with others, on pages 107-108.

The Haunted Checkerboards

GARDNER, MARTIN Mathematical Games Scientific Ameri-
can (August 1959, pages 129-130). An explanation of the
apparent paradoxes of Mr. Brooke’s jigsaw puzzles are shown
by Mr. Gardner to be related to the Fibonacci Series and
the Golden Ratio.

The 12-Coins Problem

The Amateur Scientist Scientific American (May 1955, pages
120-126). An account of the variations to this famous puz-
zle-type. It includes the instructions for constructing a slide
rule to solve the problem; a different type of table than Mr.
Hunter’s; and some odd notes such as that with only seven
weighings one can find the odd coin among 1092 otherwise
identical coins!
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Page 42: The phrase “Really Cutting . . . at the top of the page should
have been at the top of page 46.

Page 43: Problems 8 and 9 will be answered in the August issue and
should have been starred, *.

Page 57: For Derick Murdoch read Derrick Murdoch.



